427
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Preparing for the Next Influenza Season: Monitoring the Emergence and Spread of Antiviral Resistance

, , , , , ORCID Icon & ORCID Icon show all
Pages 949-959 | Received 08 Sep 2022, Accepted 16 Jan 2023, Published online: 15 Feb 2023

References

  • Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018;391(10127):1285–1300. doi:10.1016/s0140-6736(17)33293-2
  • Krammer F, Smith GJD, Fouchier RAM, et al. Influenza. Nat Rev Dis Primers. 2018;4(1):3. doi:10.1038/s41572-018-0002-y
  • Duwe SC, Schmidt B, Gärtner BC, et al. Prophylaxis and treatment of influenza: options, antiviral susceptibility, and existing recommendations. GMS Infect Dis. 2021;9:Doc02. doi:10.3205/id000071
  • Hayden FG, Sugaya N, Hirotsu N, et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med. 2018;379(10):913–923. doi:10.1056/NEJMoa1716197
  • Ikematsu H, Hayden FG, Kawaguchi K, et al. Baloxavir marboxil for prophylaxis against influenza in household contacts. N Engl J Med. 2020;383(4):309–320. doi:10.1056/NEJMoa1915341
  • Baker J, Block SL, Matharu B, et al. Baloxavir marboxil single-dose treatment in influenza-infected children: a randomized, double-blind, active controlled Phase 3 safety and efficacy trial (miniSTONE-2). Pediatr Infect Dis J. 2020;39(8):700–705. doi:10.1097/inf.0000000000002747
  • Ison MG, Portsmouth S, Yoshida Y, et al. Early treatment with baloxavir marboxil in high-risk adolescent and adult outpatients with uncomplicated influenza (CAPSTONE-2): a randomised, placebo-controlled, phase 3 trial. Lancet Infect Dis. 2020;20(10):1204–1214. doi:10.1016/s1473-3099(20)30004-9
  • Govorkova EA, Takashita E, Daniels RS, et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Res. 2022;200:105281. doi:10.1016/j.antiviral.2022.105281
  • Lackenby A, Besselaar TG, Daniels RS, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016–2017. Antiviral Res. 2018;157:38–46. doi:10.1016/j.antiviral.2018.07.001
  • Hussain M, Galvin HD, Haw TY, Nutsford AN, Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect Drug Resist. 2017;10:121–134. doi:10.2147/idr.s105473
  • Oh DY, Buda S, Biere B, et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: analysis of national surveillance data. Lancet Reg Health Europe. 2021;6:100112. doi:10.1016/j.lanepe.2021.100112
  • Zhang Y, Yakob L, Bonsall MB, Hu W. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Sci Rep. 2019;9(1):3262. doi:10.1038/s41598-019-39871-2
  • Australian Government, Department of Health and Age Care. Australian Influenza Surveillance Reports (AISR); 2022. Available from: https://www.health.gov.au/sites/default/files/documents/2022/10/aisr-fortnightly-report-no-14-26-september-to-9-october-2022.pdf. Accessed September 1, 2022.
  • World Health Organization. Bi-weekly influenza situation update; Western Pacific Region. World Health Organization; 2022. Available from: https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/seasonal-influenza/influenza-20220727.pdf?sfvrsn=39dcc97a_103. Accessed July 27, 2022.
  • Schulze M, Nitsche A, Schweiger B, Biere B, Liu DX. Diagnostic approach for the differentiation of the pandemic influenza A(H1N1)v virus from recent human influenza viruses by real-time PCR. PLoS One. 2010;5(4):e9966. doi:10.1371/journal.pone.0009966
  • Rath B, Chen X, Spies V, et al. Prospective surveillance of antiviral resistance in hospitalized infants less than 12 months of age with A(H3N2) influenza infection and treated with oseltamivir. Antivir Ther. 2017;22(6):515–522. doi:10.3851/imp3141
  • Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309–10313. doi:10.1128/jvi.01109-09
  • Zhou B, Lin X, Wang W, et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol. 2014;52(5):1330–1337. doi:10.1128/jcm.03265-13
  • Duwe S, Schweiger B. A new and rapid genotypic assay for the detection of neuraminidase inhibitor resistant influenza A viruses of subtype H1N1, H3N2, and H5N1. J Virol Methods. 2008;153(2):134–141. doi:10.1016/j.jviromet.2008.07.017
  • Matrosovich M, Matrosovich T, Carr J, Roberts NA, Klenk HD. Overexpression of the −2,6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors. J Virol. 2003;77(15):8418–8425. doi:10.1128/jvi.77.15.8418-8425.2003
  • Rath BC, Spies X, Muehlhans V, et al. Prospective surveillance of antiviral resistance in hospitalized infants less than 12 months of age with A(H3N2) influenza infection and treated with oseltamivir. Antivir Ther. 2016;22(6):515–522.
  • World Health Organization. Meetings of the WHO working group on surveillance of influenza antiviral susceptibility- Geneva, November 2011 and June 2012. Available from: https://apps.who.int/iris/bitstream/handle/10665/241965/WER8739_369-374.PDF?sequence=1&isAllowed=y. Accessed January 26, 2023.
  • Schmidtke M, Schnittler U, Jahn B, Dahse H, Stelzner A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J Virol Methods. 2001;95(1–2):133–143. doi:10.1016/s0166-0934(01)00305-6
  • Pauwels R, Balzarini J, Baba M, et al. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988;20(4):309–321. doi:10.1016/0166-0934(88)90134-6
  • Chesnokov A, Patel MC, Mishin VP, et al. Replicative fitness of seasonal influenza a viruses with decreased susceptibility to baloxavir. J Infect Dis. 2020;221(3):367–371. doi:10.1093/infdis/jiz472
  • Bright RA, Medina MJ, Xu X, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005;366(9492):1175–1181. doi:10.1016/S0140-6736(05)67338-2
  • Sheu TG, Deyde VM, Okomo-Adhiambo M, et al. Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother. 2008;52(9):3284–3292. doi:10.1128/AAC.00555-08
  • Ciancio BC, Meerhoff TJ, Kramarz P, et al. Oseltamivir-resistant influenza A(H1N1) viruses detected in Europe during season 2007–8 had epidemiologic and clinical characteristics similar to co-circulating susceptible A(H1N1) viruses. Euro Surveill. 2009;14(46). doi:10.2807/ese.14.46.19412-en
  • Takashita E, Meijer A, Lackenby A, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013–2014. Antiviral Res. 2015;117:27–38. doi:10.1016/j.antiviral.2015.02.003
  • Hurt AC, Besselaar TG, Daniels RS, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014–2015. Antiviral Res. 2016;132:178–185. doi:10.1016/j.antiviral.2016.06.001
  • Taieb V, Ikeoka H, Ma FF, et al. A network meta-analysis of the efficacy and safety of baloxavir marboxil versus neuraminidase inhibitors for the treatment of influenza in otherwise healthy patients. Curr Med Res Opin. 2019:1–10. doi:10.1080/03007995.2019.1584505
  • Vasiliy PM, Mira CP, Anton C, et al. Susceptibility of influenza A, B, C, and D viruses to baloxavir. Emerg Infect Dis J. 2019;25(10). doi:10.3201/eid2510.190607
  • Abed Y, Fage C, Checkmahomed L, Venable MC, Boivin G. Characterization of contemporary influenza B recombinant viruses harboring mutations of reduced susceptibility to baloxavir marboxil, in vitro and in mice. Antivir Res. 2020;179:104807. doi:10.1016/j.antiviral.2020.104807
  • Imai M, Yamashita M, Sakai-Tagawa Y, et al. Influenza A variants with reduced susceptibility to baloxavir isolated from Japanese patients are fit and transmit through respiratory droplets. Nature Microbiol. 2020;5(1):27–33. doi:10.1038/s41564-019-0609-0
  • Sato M, Takashita E, Katayose M, et al. Detection of variants with reduced baloxavir marboxil susceptibility after treatment of children with influenza A during the 2018–2019 influenza season. J Infect Dis. 2020;222(1):121–125. doi:10.1093/infdis/jiaa061
  • Omoto S, Speranzini V, Hashimoto T, et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci Rep. 2018;8(1):9633. doi:10.1038/s41598-018-27890-4
  • Takashita E, Ichikawa M, Morita H, et al. Human-to-Human Transmission of Influenza A(H3N2) virus with reduced susceptibility to baloxavir, Japan, February 2019. Emerg Infect Dis. 2019;25(11):2108–2111. doi:10.3201/eid2511.190757
  • Takashita E, Kawakami C, Ogawa R, et al. Influenza A(H3N2) virus exhibiting reduced susceptibility to baloxavir due to a polymerase acidic subunit I38T substitution detected from a hospitalised child without prior baloxavir treatment, Japan, January 2019. Euro Surveill. 2019;24(12). doi:10.2807/1560-7917.es.2019.24.12.1900170
  • Valenciano M, Ciancio BC; on behalf of the I-MOVE study team C. I-MOVE: a European network to measure the effectiveness of influenza vaccines. Eurosurveillance. 2012;17(39):20281. doi:10.2807/ese.17.39.20281-en
  • Imoveflu. Preliminary influenza vaccine effectiveness estimates for 2021–22. I-Move 2020; 2022. Available from: https://www.imoveflu.org/news/. Accessed December 1, 2022.
  • Rose A, Kissling E, Emborg H-D, et al. Interim 2019/20 influenza vaccine effectiveness: six European studies, September 2019 to January 2020. Eurosurveillance. 2020;25(10):2000153. doi:10.2807/1560-7917.ES.2020.25.10.2000153