236
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Does the Microflora of Surgery Site Infection Change After Prophylactic Use of Vancomycin Powder in the Spine Surgery

, ORCID Icon, , , , & show all
Pages 105-113 | Received 27 Sep 2022, Accepted 22 Dec 2022, Published online: 05 Jan 2023

References

  • Horii C, Yamazaki T, Oka H, et al. Does intrawound vancomycin powder reduce surgical site infection after posterior instrumented spinal surgery? A propensity score-matched analysis. Spine J. 2018;18(12):2205–2212. doi:10.1016/j.spinee.2018.04.015
  • Hovis JP, Montalvo R, Marinos D, et al. Intraoperative vancomycin powder reduces Staphylococcus aureus surgical site infections and biofilm formation on fixation implants in a rabbit model. J Orthop Trauma. 2018;32(5):263–268. doi:10.1097/BOT.0000000000001136
  • Park HY, Hegde V, Zoller SD, et al. Progress not panacea: vancomycin powder efficacy and dose evaluated in an in vivo mouse model of spine implant infection. Spine J. 2020;20(6):973–980. doi:10.1016/j.spinee.2019.12.007
  • Dodson V, Majmundar N, Swantic V, Assina R. The effect of prophylactic vancomycin powder on infections following spinal surgeries: a systematic review. Neurosurg Focus. 2019;46(1):E11. doi:10.3171/2018.10.FOCUS18470
  • Sweet FA, Roh M, Sliva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine. 2011;36(24):2084–2088. doi:10.1097/BRS.0b013e3181ff2cb1
  • Van Hal M, Lee J, Laudermilch D, Nwasike C, Kang J. Vancomycin powder regimen for prevention of surgical site infection in complex spine surgeries. Clin Spine Surg. 2017;30(8):E1062–E1065. doi:10.1097/BSD.0000000000000516
  • Adogwa O, Elsamadicy AA, Sergesketter A, et al. Prophylactic use of intraoperative vancomycin powder and postoperative infection: an analysis of microbiological patterns in 1200 consecutive surgical cases. J Neurosurg Spine. 2017;27(3):328–334. doi:10.3171/2017.2.SPINE161310
  • Guzek A, Rybicki Z, Tomaszewski D. Changes in bacterial flora and antibiotic resistance in clinical samples isolated from patients hospitalized in the Military Institute of Medicine in Warsaw, Poland, between 2005–2012. Przegl Epidemiol. 2017;71(2):165–176.
  • Esposito S, Capuano A, Noviello S, et al. Modification of patients’ endogenous bacterial flora during hospitalization in a large teaching hospital in Naples. J Chemother. 2003;15(6):568–573. doi:10.1179/joc.2003.15.6.568
  • Sudduth JD, Moss JA, Spitler CA, et al. Open fractures: are we still treating the same types of infections? Surg Infect. 2020;21(9):766–772. doi:10.1089/sur.2019.140
  • Solomkin JS, Mazuski J, Blanchard JC, et al. Introduction to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the prevention of surgical site infections. Surg Infect. 2017;18(4):385–393. doi:10.1089/sur.2017.075
  • Russo V, Leaptrot D, Otis M, Smith H, Hebden JN, Wright MO. Health care-associated infections studies project: an American Journal of Infection Control and National Healthcare Safety Network Data Quality Collaboration Case Study - chapter 9 surgical site infection event (SSI) case study. Am J Infect Control. 2022;50(7):799–800. doi:10.1016/j.ajic.2022.03.036
  • Khan NR, Thompson CJ, DeCuypere M, et al. A meta-analysis of spinal surgical site infection and vancomycin powder. J Neurosurg Spine. 2014;21(6):974–983. doi:10.3171/2014.8.SPINE1445
  • Garg S, Bloch N, Potter M, et al. Topical vancomycin in pediatric spine surgery does not reduce surgical site infection: a retrospective cohort study. Spine Deform. 2018;6(5):523–528. doi:10.1016/j.jspd.2018.01.010
  • Fernandes MM, Ivanova K, Hoyo J, Pérez-Rafael S, Francesko A, Tzanov T. Nanotransformation of vancomycin overcomes the intrinsic resistance of gram-negative bacteria. ACS Appl Mater Interfaces. 2017;9(17):15022–15030. doi:10.1021/acsami.7b00217
  • Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat Commun. 2013;4:1496. doi:10.1038/ncomms2503
  • Yarlagadda V, Manjunath GB, Sarkar P, et al. Glycopeptide antibiotic to overcome the intrinsic resistance of gram-negative bacteria. ACS Infect Dis. 2016;2(2):132–139. doi:10.1021/acsinfecdis.5b00114
  • Ghobrial GM, Thakkar V, Andrews E, et al. Intraoperative vancomycin use in spinal surgery: single institution experience and microbial trends. Spine. 2014;39(7):550–555. doi:10.1097/BRS.0000000000000241
  • Rosa CP, Pereira JA, Cristina de Melo Santos N, et al. Vancomycin-induced gut dysbiosis during Pseudomonas aeruginosa pulmonary infection in a mice model. J Leukoc Biol. 2020;107(1):95–104. doi:10.1002/JLB.4AB0919-432R
  • Scheithauer TPM, Bakker GJ, Winkelmeijer M, et al. Compensatory intestinal immunoglobulin response after vancomycin treatment in humans. Gut Microbes. 2021;13(1):1–14. doi:10.1080/19490976.2021.1875109
  • Karaman R, Jubeh B, Breijyeh Z. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 2020;25(12):2888. doi:10.3390/molecules25122888
  • Kaye KS, Devine ST, Ford KD, Anderson DJ. Surgical site infection prophylaxis strategies for cardiothoracic surgery: a decision-analytic model. Scand J Infect Dis. 2012;44(12):948–955. doi:10.3109/00365548.2012.700118
  • Yue J, Dong BR, Yang M, Chen X, Wu T, Liu GJ. Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst Rev. 2016;(1):CD008056. doi:10.1002/14651858.CD008056.pub3
  • Li J, Zhao QH, Huang KC, et al. Linezolid vs. vancomycin in treatment of methicillin-resistant staphylococcus aureus infections: a meta-analysis. Eur Rev Med Pharmacol Sci. 2017;21(17):3974–3979.
  • Equils O, da Costa C, Wible M, Lipsky BA. The effect of diabetes mellitus on outcomes of patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: data from a prospective double-blind clinical trial comparing treatment with linezolid versus vancomycin. BMC Infect Dis. 2016;16(1):476. doi:10.1186/s12879-016-1779-5
  • Salimi S, Khayat Kashani HR, Azhari S, et al. Local vancomycin therapy to reduce surgical site infection in adult spine surgery: a randomized prospective study. Eur Spine J. 2022;31(2):454–460. doi:10.1007/s00586-021-07050-5
  • Dybowski BA, Zapała P, Bres-Niewada E, et al. Catheter-associated bacterial flora in patients with benign prostatic hyperplasia: shift in antimicrobial susceptibility pattern. BMC Infect Dis. 2018;18(1):590. doi:10.1186/s12879-018-3507-9
  • Shetty HS, Mallela AR, Shastry BA, Acharya V. Parietal bone osteomyelitis in melioidosis. BMJ Case Rep. 2015;2015:bcr2014208612. doi:10.1136/bcr-2014-208612
  • Gande A, Rosinski A, Cunningham T, Bhatia N, Lee YP. Selection pressures of vancomycin powder use in spine surgery: a meta-analysis. Spine J. 2019;19(6):1076–1084. doi:10.1016/j.spinee.2019.01.002
  • Aleissa S, Parsons D, Grant J, Harder J, Howard J. Deep wound infection following pediatric scoliosis surgery: incidence and analysis of risk factors. Can J Surg. 2011;54(4):263–269. doi:10.1503/cjs.008210
  • Cahill PJ, Warnick DE, Lee MJ, et al. Infection after spinal fusion for pediatric spinal deformity: thirty years of experience at a single institution. Spine. 2010;35(12):1211–1217. doi:10.1097/BRS.0b013e3181c212d1
  • Warner SJ, Uppstrom TJ, Miller AO, et al. Epidemiology of deep surgical site infections after pediatric spinal fusion surgery. Spine. 2017;42(3):E163–E168. doi:10.1097/BRS.0000000000001735
  • Maesani M, Doit C, Lorrot M, et al. Surgical site infections in pediatric spine surgery: comparative microbiology of patients with idiopathic and nonidiopathic etiologies of spine deformity. Pediatr Infect Dis J. 2016;35(1):66–70. doi:10.1097/INF.0000000000000925
  • Glotzbecker M, Troy M, Miller P, et al. Implementing a multidisciplinary clinical pathway can reduce the deep surgical site infection rate after posterior spinal fusion in high-risk patients. Spine Deform. 2019;7(1):33–39. doi:10.1016/j.jspd.2018.06.010
  • Vandenberg C, Niswander C, Carry P, et al. Compliance with a comprehensive antibiotic protocol improves infection incidence in pediatric spine surgery. J Pediatr Orthop. 2018;38(5):287–292. doi:10.1097/BPO.0000000000000812