725
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Management of Bacterial and Fungal Infections in the ICU: Diagnosis, Treatment, and Prevention Recommendations

, , , &
Pages 2709-2726 | Received 28 Feb 2023, Accepted 22 Apr 2023, Published online: 04 May 2023

References

  • Guest Julian F, Tomas K, Dinah G, Neil W. Modelling the annual NHS costs and outcomes attributable to healthcare-associated infections in England. BMJ open. 2020;10(1):e033367. doi:10.1136/bmjopen-2019-033367
  • Louis VJ, Yasser S, Mervyn S, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478. doi:10.1001/JAMA.2020.2717
  • Louis VJ, Jordi R, John M, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–2329. doi:10.1001/JAMA.2009.1754
  • Magill Shelley S, Edwards Jonathan R, Wendy B, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208. doi:10.1056/nejmoa1306801
  • Magnason S, Kristinsson KG, Stefansson T, et al. Risk factors and outcome in ICU-acquired infections. Acta Anaesthesiol Scand. 2008;52(9):1238–1245. doi:10.1111/J.1399-6576.2008.01763.X
  • Pen YS, Yin CY, Shui HH, Der WF. A risk factor analysis of healthcare-associated fungal infections in an intensive care unit: a retrospective cohort study. BMC Infect Dis. 2013;13(1):1–10. doi:10.1186/1471-2334-13-10/TABLES/3
  • Montagna MT, Caggiano G, Lovero G, et al. Epidemiology of invasive fungal infections in the intensive care unit: results of a multicenter Italian survey (Aurora Project). Infection. 2013;41(3):645. doi:10.1007/S15010-013-0432-0
  • Aleksa D, Branko M, Ivana M, et al. Hospital-acquired infections in the adult intensive care unit—Epidemiology, antimicrobial resistance patterns, and risk factors for acquisition and mortality. Am J Infect Control. 2020;48(10):1211–1215. doi:10.1016/J.AJIC.2020.01.009
  • Chanu R, Kadri Sameer S, Dekker John P, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open. 2020;3(4):e202899–e202899. doi:10.1001/JAMANETWORKOPEN.2020.2899
  • Ecdc. AER for 2017: healthcare-associated infections acquired in intensive care units; 2017.
  • De Waele Jan J, Murat A, Massimo A, et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med. 2018;44(2):189–196. doi:10.1007/S00134-017-5036-1/FIGURES/3
  • Matteo B, De Waele Jan J, Philippe E, et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med. 2015;41(5):776–795. doi:10.1007/S00134-015-3719-Z
  • Judith B, Krysan Damian J. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18(6):319–331. doi:10.1038/s41579-019-0322-2
  • Fisher Matthew C, Ana A-I, Judith B, et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol. 2022;20(9):557–571. doi:10.1038/s41579-022-00720-1
  • Silke S, Ferry H, Rhodes Johanna L, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016;5(1):35. doi:10.1186/s13756-016-0132-5
  • Eyre David W, Sheppard Anna E, Hilary M, et al. A candida auris outbreak and its control in an intensive care setting. N Engl J Med. 2018;379(14):1322–1331. doi:10.1056/NEJMoa1714373
  • Chow Nancy A, Lalitha G, Tsay Sharon V, et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect Dis. 2018;18(12):1377–1384. doi:10.1016/S1473-3099(18)30597-8
  • Jensen RH, Johansen HK, Søes LM, et al. Posttreatment antifungal resistance among colonizing candida isolates in candidemia patients: results from a systematic multicenter study. Antimicrob Agents Chemother. 2016;60(3):1500–1508. doi:10.1128/AAC.01763-15
  • Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–798. doi:10.1016/j.cmi.2019.03.028
  • Eva A, Ana G, Paula L-E, et al. Fluconazole-resistant Candida parapsilosis clonally related genotypes: first report proving the presence of endemic isolates harbouring the Y132F ERG11 gene substitution in Spain. Clin Microbiol Infect. 2022;28(8):1113–1119. doi:10.1016/j.cmi.2022.02.025
  • Ashutosh S, Singh Pradeep K, Bansidhar T, et al. Emergence of clonal fluconazole-resistant Candida parapsilosis clinical isolates in a multicentre laboratory-based surveillance study in India. J Antimicrob Chemother. 2019;74(5):1260–1268. doi:10.1093/jac/dkz029
  • Magobo Rindidzani E, Lockhart Shawn R, Govender Nelesh P, et al. Fluconazole‐resistant Candida parapsilosis strains with a Y132F substitution in the ERG11 gene causing invasive infections in a neonatal unit, South Africa. Mycoses. 2020;63(5):471–477. doi:10.1111/myc.13070
  • van der Linden Jan WM, Eveline S, Kampinga Greetje A, et al. Clinical implications of azole resistance in aspergillus fumigatus, the Netherlands, 2007–2009. Emerg Infect Dis. 2011;17(10):1846–1854. doi:10.3201/eid1710.110226
  • Martin H, Jon S-G, Walsh Thomas J, et al. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiolo. Lancet Infect Dis. 2021;21(8):e246–e257. doi:10.1016/S1473-3099(20)30784-2
  • Rawson TM, Wilson RC, Holmes A. Understanding the role of bacterial and fungal infection in COVID-19. Clin Microbiol Infect. 2020. doi:10.1016/j.cmi.2020.09.025
  • Damien C, Aurore C, Olivier P, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care. 2020;10(1):1–9. doi:10.1186/S13613-020-00736-X/FIGURES/1
  • Rawson Timothy M, Damien M, Raheelah A, Moore Luke SP, Holmes Alison H. Antimicrobial use, drug-resistant infections and COVID-19. Nat Rev Microbiol. 2020;18:1–2. doi:10.1038/s41579-020-0395-y
  • Rawson TM, Moore LS, Castro-Sanchez E, et al. COVID-19 and the potential long term impact on antimicrobial resistance. J Antimicrob Chemother. 2020;75:1687. doi:10.1093/jac/dkaa194
  • Verweij Paul E, Rijnders Bart JA, Brüggemann Roger JM, et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion. Intensive Care Med. 2020;46(8):1524–1535. doi:10.1007/s00134-020-06091-6
  • Philipp K, Matteo B, Arunaloke C, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis. 2021;21(6):e149–e162. doi:10.1016/S1473-3099(20)30847-1
  • Martin H, Danila S, Rosanne S, et al. COVID-19-associated fungal infections. Nat Microbiol. 2022;7(8):1127–1140. doi:10.1038/s41564-022-01172-2
  • Laura E, Andrew R, Waleed A, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):E1063–E1143. doi:10.1097/CCM.0000000000005337
  • Mervyn S, Deutschman Clifford S, Warren SC, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801. doi:10.1001/jama.2016.0287
  • Yu Sean C, Nirmala S, Kevin B, et al. Comparison of early warning scores for sepsis early identification and prediction in the general ward setting. JAMIA Open. 2021;4(3). doi:10.1093/jamiaopen/ooab062
  • Michael M, Bastian R, Max H, Jutzeler Catherine R, Karsten B. Early prediction of sepsis in the ICU using machine learning: a systematic review. Front Med. 2021;8. doi:10.3389/fmed.2021.607952
  • Mervyn S, Matt I-K, Manu S-H. Sepsis hysteria: excess hype and unrealistic expectations. Lancet. 2019;394(10208):1513–1514. doi:10.1016/S0140-6736(19)32483-3
  • Gang C, Kailiang X, Fangyuan S, Yuxia S, Ziyuan K, Bangjiang F. Risk factors of multidrug-resistant bacteria in lower respiratory tract infections: a systematic review and meta-analysis. Can J Infect Dis Med Microbiol. 2020;2020. doi:10.1155/2020/7268519
  • Miles RT, Esmita C, Moore LSP, et al. Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study. BMC Med. 2016;14(1):208. doi:10.1186/s12916-016-0751-y
  • Kevin M, Parker Sarah K, Todd James K, Dominguez Samuel R. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. J Clin Microbiol. 2017;55(3):715–723. doi:10.1128/JCM.02264-16
  • Robert T. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front Public Heal. 2017;5:1–7. doi:10.3389/fpubh.2017.00307
  • Public Health England. UK standards for microbiology investigations. Bacteriology. 2015;55(5.2):1–21.
  • Khan Zeeshan A, Siddiqui Mohd F, Seungkyung P. Current and emerging methods of antibiotic susceptibility testing. Diagnostics. 2019;9(2):49. doi:10.3390/diagnostics9020049
  • Brigitte L, Sylvie D, Arendrup Maiken C, Jacques PJ, Pierre T. How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A State-of-the art. Front Microbiol. 2016;7:697. doi:10.3389/FMICB.2016.00697
  • Anna Å, Emma J, Erika M, et al. EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: validation in 55 European laboratories. J Antimicrob Chemother. 2020;75(11):3230–3238. doi:10.1093/JAC/DKAA333
  • Emma J, Erika M, Gunnar K. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J Antimicrob Chemother. 2020;75(4):968–978. doi:10.1093/JAC/DKZ548
  • van Belkum A, Bachmann TT, Gerd L, et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nat Rev Microbiol. 2018;17(1):51–62. doi:10.1038/s41579-018-0098-9
  • van Belkum A, Burnham Carey Ann D, Rossen JWA, Frederic M, Olivier R, Michael DW. Innovative and rapid antimicrobial susceptibility testing systems. Nat Rev Microbiol. 2020;18(5):299–311. doi:10.1038/s41579-020-0327-x
  • Antony C, Guy P, Gilbert G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407. doi:10.1111/j.1574-6976.2011.00298.x
  • Osthoff M, Gürtler N, Bassetti S, et al. Impact of MALDI-TOF-MS-based identification directly from positive blood cultures on patient management: a controlled clinical trial. Clin Microbiol Infect. 2017;23(2):78–85. doi:10.1016/j.cmi.2016.08.009
  • Timbrook Tristan T, Morton Jacob B, McConeghy Kevin W, Caffrey Aisling R, Eleftherios M, LaPlante Kerry L. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(1):15–23. doi:10.1093/cid/ciw649
  • Buchan Blake W, Ledeboer Nathan A. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822. doi:10.1128/CMR.00003-14
  • Wickes Brian L, Wiederhold Nathan P, Harvey TA, Prum RO. Molecular diagnostics in medical mycology. Nat Commun. 2018;9(1):1–13. doi:10.1038/s41467-018-07556-5
  • Antti V, Hytönen Vesa P, Laitinen Olli H. Modern tools for rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol. 2020;10:308. doi:10.3389/FCIMB.2020.00308/BIBTEX
  • Ritu B, Teng Christine B, Cunningham Scott A, et al. Randomized trial of rapid multiplex polymerase chain reaction–based blood culture identification and susceptibility testing. Clin Infect Dis. 2015;61(7):1071–1080. doi:10.1093/cid/civ447
  • Miles RT. Understanding how diagnostics influence antimicrobial decision-making is key to successful clinical trial design. Clin Microbiol Infect. 2023. doi:10.1016/j.cmi.2023.03.010
  • Muriel F, Nseir S, Mégarbane B. Respiratory multiplex PCR and procalcitonin to reduce antibiotic exposure in severe SARS-CoV-2 pneumonia: a multicenter randomised controlled trial. Clin Microbiol Infect. 2023. doi:10.1016/j.cmi.2023.01.009
  • Anne HC, Bertrand E, Nancy W, et al. Impact of rapid antimicrobial susceptibility testing in gram-negative rod bacteremia: a quasi-experimental study. J Clin Microbiol. 2020;58(9). doi:10.1128/JCM.00360-20
  • Vanesa A-V, Cristina S, Timothy P. Impact of rapid susceptibility testing on antimicrobial therapy and clinical outcomes in Gram-negative bloodstream infections. J Antimicrob Chemother. 2022;77(3):771–781. doi:10.1093/jac/dkab449
  • Christensen Alyssa B, Brent F, Tobias P, et al. Impact of a laboratory-developed phenotypic rapid susceptibility test directly from positive blood cultures on time to narrowest effective therapy in patients with gram-negative bacteremia: a prospective randomized trial. Open Forum Infect Dis. 2022;9(7). doi:10.1093/ofid/ofac347
  • Rawson Timothy M, Wilson Richard C, O’Hare D, et al. Optimizing antimicrobial use: challenges, advances and opportunities. Nat Rev Microbiol. 2021;19(12):747–758. doi:10.1038/s41579-021-00578-9
  • Pappas Peter G, Lionakis Michail S, Cavling AM, Luis O-Z, Jan KB. Invasive candidiasis. Nat Rev Dis Prim. 2018;4(1):1–20. doi:10.1038/nrdp.2018.26
  • Roberts Jason A, Paul Sanjoy K, Murat A, et al. DALI: defining antibiotic levels in intensive care unit patients: are current ??-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–1083. doi:10.1093/cid/ciu027
  • Michael O, Martin S, Gianmarco B, Hafiz A-AM, Roberts JA. Prolonged administration of β-lactam antibiotics - a comprehensive review and critical appraisal. Swiss Med Wkly. 2016;146:w14368. doi:10.4414/smw.2016.14368
  • Roberts Jason A, Mohd-Hafiz A-A, Davis Joshua S, et al. Continuous versus intermittent β-lactam infusion in severe sepsis. a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681–691. doi:10.1164/rccm.201601-0024OC
  • Kollef Marin H, Shorr Andrew F, Matteo B, et al. Timing of antibiotic therapy in the ICU. Crit Care. 2021;25(1). doi:10.1186/S13054-021-03787-Z
  • Solen K, Benoit V, Laurence A-L, François TJ. Molecular diagnostic methods for pneumonia: how can they be applied in practice? Curr Opin Infect Dis. 2021;34(2):118–125. doi:10.1097/QCO.0000000000000713
  • Maria PA, Adam S, Anna H, Adam I, Harris Patrick NA. New microbiological techniques for the diagnosis of bacterial infections and sepsis in ICU INCLUDING POINT OF CARE. Curr Infect Dis Rep. 2021;23(8). doi:10.1007/S11908-021-00755-0
  • David B, Primrose GB, Francesco B, et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect Dis. 2017;17(9):990–1001. doi:10.1016/S1473-3099(17)30325-0
  • Silva Brenda NG, Andriolo Régis B, Atallah Álvaro N, Reinaldo S. De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst Rev. 2013;2018(12). doi:10.1002/14651858.CD007934.pub3
  • Barberena MR, Viteri GJA, Castillo ZWJ, Kessler BF. De-escalation, adequacy of antibiotic therapy and culture positivity in septic patients: an observational study. Rev Bras Ter Intensiva. 2016;28:315–322. doi:10.5935/0103-507X.20160044
  • Abdul-Aziz Mohd H, Alffenaar Jan Willem C, Matteo B, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46(6):1127–1153. doi:10.1007/s00134-020-06050-1
  • Stefan H, Friedhelm B, Thorsten B, et al. Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial. Intensive Care Med. 2022;48(3):311–321. doi:10.1007/s00134-021-06609-6
  • Leonel L, Belen E, Sergio R-E. Current understanding in source control management in septic shock patients: a review. Ann Transl Med. 2016;4(17):330. doi:10.21037/atm.2016.09.02
  • De Waele Jan J, Massimo G, Ignacio M-L. Source control in the management of sepsis and septic shock. Intensive Care Med. 2022;48(12):1799–1802. doi:10.1007/s00134-022-06852-5
  • Marshall John C, Al Naqbi A. Principles of source control in the management of sepsis. Crit Care Clin. 2009;25(4):753–768. doi:10.1016/j.ccc.2009.08.001
  • O’Grady Naomi P, Mary A, Burns Lillian A, et al. Guidelines for the Prevention of Intravascular Catheter-related Infections. Clin Infect Dis. 2011;52(9):e162–e193. doi:10.1093/cid/cir257
  • Peter P, Dale N, Sean B, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–2732. doi:10.1056/NEJMoa061115
  • Girard Timothy D, Kress John P, Fuchs Barry D, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–134. doi:10.1016/S0140-6736(08)60105-1
  • Augustes R, Ho KM. meta-analysis of randomised controlled trials on daily sedation interruption for critically ill adult patients. Anaesth Intensive Care. 2011;39(3):401–409. doi:10.1177/0310057X1103900310
  • Sangeeta M. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol. JAMA. 2012;308(19):1985. doi:10.1001/jama.2012.13872
  • Julie S, Anthony T, Walter Z, et al. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control. 2017;6(1):6. doi:10.1186/s13756-016-0149-9
  • Didier P, Stéphane H, Stephan H, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Lancet. 2000;356(9238):1307–1312. doi:10.1016/S0140-6736(00)02814-2
  • Sarah T-S, Hans P, Widmer Andreas F. Hand hygiene in the intensive care unit. Crit Care Med. 2010;38:S299–S305. doi:10.1097/CCM.0b013e3181e6a23f
  • Kim Janice J, Turner Nancy E, Emily H, et al. Corynebacterium striatum outbreak among ventilated COVID-19 patients in an acute care hospital – California, 2021. Open Forum Infect Dis. 2021;8(Supplement_1):S495–S496. doi:10.1093/ofid/ofab466.998
  • Charles HW, Huckabee Charmaine M, O’Grady Naomi P, et al. Intervention to reduce transmission of resistant bacteria in intensive care. N Engl J Med. 2011;364(15):1407–1418. doi:10.1056/NEJMoa1000373
  • De Angelis G, Cataldo MA, De Waure C, et al. Infection control and prevention measures to reduce the spread of vancomycin-resistant enterococci in hospitalized patients: a systematic review and meta-analysis. J Antimicrob Chemother. 2014;69(5):1185–1192. doi:10.1093/jac/dkt525
  • Gerding Dale N, Muto Carlene A, Owens J, Robert C. Measures to Control and Prevent Clostridium difficile Infection. Clin Infect Dis. 2008;46(s1):S43–S49. doi:10.1086/521861
  • Nizam D. Surveillance and outbreak management. Man Infect Prev Control. 2019;2019:68–94.
  • Hammond Naomi E, John M, Ian S, et al. Association between selective decontamination of the digestive tract and in-hospital mortality in intensive care unit patients receiving mechanical ventilation. JAMA. 2022;328(19):1922. doi:10.1001/jama.2022.19709
  • Miles RT, Prockter MLS, Christopher HJ, Hugo D, Helen HA. Plasmid-mediated colistin resistance mechanisms: is it time to revise our approach to selective digestive decontamination? Lancet Infect Dis. 2016;16(2):149–150. doi:10.1016/S1473-3099(15)00539-3
  • Catherine B, Emma B, Timothy C, et al. Effect of selective decontamination of the digestive tract on hospital mortality in critically ill patients receiving mechanical ventilation. JAMA. 2022;328(19):1911. doi:10.1001/jama.2022.17927
  • Niccolò B, Jonas M, Marci D, et al. Strategies to prevent central line-associated bloodstream infections in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol. 2022;43(5):553–569. doi:10.1017/ice.2022.87
  • Julian B, Annette R, Peter H, et al. ‘Matching Michigan’: a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ Qual Saf. 2013;22(2):110–123. doi:10.1136/bmjqs-2012-001325
  • Jordi R, Hartmut L, Giuseppe C, Robert M. A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med. 2010;36(5):773–780. doi:10.1007/s00134-010-1841-5
  • Hellyer Thomas P, Victoria E, Peter W, John SA. The Intensive Care Society recommended bundle of interventions for the prevention of ventilator-associated pneumonia. J Intensive Care Soc. 2016;17(3):238–243. doi:10.1177/1751143716644461
  • Levy Mitchell M, Phillip DR, Townsend Sean R, et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 2010;36(2):222–231. doi:10.1007/s00134-009-1738-3
  • Julien P, Lauro D, Anne B, et al. Risk factors for candidemia: a prospective matched case-control study. Critical Care. 2020;24:1. doi:10.1186/s13054-020-2766-1
  • Jenks Jeffrey D, Nam Hannah H, Martin H. Invasive aspergillosis in critically ill patients: review of definitions and diagnostic approaches. Mycoses. 2021;64(9):1002–1014. doi:10.1111/MYC.13274
  • Ibrahim Ashraf S, Brad S, Walsh Thomas J, Kontoyiannis Dimitrios P. Pathogenesis of mucormycosis. Clin Infect Dis. 2012;54(SUPPL. 1):1–7. doi:10.1093/cid/cir865
  • Lewis WP, Price Jessica S, Matthijs B. Pneumocystis jirovecii pneumonia: epidemiology, clinical manifestation and diagnosis. Curr Fungal Infect Rep. 2019;13(4):260–273. doi:10.1007/s12281-019-00349-3
  • Diling W, Chenfang W, Siye Z, Yanjun Z. Risk factors of ventilator-associated pneumonia in critically III patients. Front Pharmacol. 2019;10. doi:10.3389/FPHAR.2019.00482
  • Bonten Marc JM, Kollef Marin H, Hall Jesse B. Risk factors for ventilator-associated pneumonia: from epidemiology to patient management. Clin Infect Dis. 2004;38(8):1141–1149. doi:10.1086/383039/2/38-8-1141-TBL003.GIF
  • François TJ, Etienne R, François B, Alexis T, Matteo B. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med. 2020;46(2):266. doi:10.1007/S00134-020-05950-6
  • Kiang LE, Alvin T, Gillian L, et al. Risk factors associated with urinary tract infections in intensive care patients. Infect Dis Heal. 2016;21(2):62–66. doi:10.1016/J.IDH.2016.03.004
  • Rampini Silvana K, Bloemberg Guido V, Keller Peter M, et al. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin Infect Dis. 2011;53(12):1245–1251. doi:10.1093/cid/cir692
  • Pepper Dominique J, Junfeng S, Chanu R, et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults: a systematic review and meta-analysis. Chest. 2019;155(6):1109. doi:10.1016/J.CHEST.2018.12.029
  • Liliana S, France G, Amre Devendra K, Patrick S-L, Jacques L. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39(2):206–217. doi:10.1086/421997
  • Von Dach E, Albrich Werner C, Sophie BA, et al. Effect of C-reactive protein–guided antibiotic treatment duration, 7-day treatment, or 14-day treatment on 30-day clinical failure rate in patients with uncomplicated gram-negative bacteremia: a randomized clinical trial. JAMA. 2020;323(21):2160–2169. doi:10.1001/JAMA.2020.6348
  • Rawson Timothy M, Esmita C, Moore Luke SP, et al. Exploring the Use of C-Reactive Protein to Estimate the Pharmacodynamics of Vancomycin. Ther Drug Monitor. 2018;40(3):315–321. doi:10.1097/FTD.0000000000000507
  • Ramos-Martín V, Neely MN, McGowan P, et al. Population pharmacokinetics and pharmacodynamics of teicoplanin in neonates: making better use of C-reactive protein to deliver individualized therapy. J Antimicrob Chemother. 2016;71:dkw295. doi:10.1093/jac/dkw295
  • Clancy Cornelius J, Hong NM. Diagnosing invasive candidiasis. J Clin Microbiol. 2018;56(5). doi:10.1128/JCM.01909-17
  • Małgorzata M, Thierry C, Maurizio S, Daniel P, Claudio V. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia. Crit Care. 2010;14(6). doi:10.1186/CC9365
  • Tomer A, Itzhak L, Hannah S, Dafna Y, Leonard L, Mical P. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J Clin Microbiol. 2012;50(11):3652–3658. doi:10.1128/JCM.00942-12/SUPPL_FILE/ZJM999092057SO2.PDF
  • Huurneman Luc J, Michael N, Anette V, et al. Pharmacodynamics of voriconazole in children: further steps along the path to true individualized therapy. Antimicrob Agents Chemother. 2016;60(4):2336–2342. doi:10.1128/AAC.03023-15
  • Karageorgopoulos Drosos E, Vouloumanou Evridiki K, Fotinie N, Argyris M, Rafailidis Petros I, Falagas Matthew E. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–770. doi:10.1093/CID/CIQ206
  • Kidd Sarah E, Chen Sharon CA, Wieland M, Halliday Catriona L, New A. Age in molecular diagnostics for invasive fungal disease: are we ready? Front Microbiol. 2020;10:2903. doi:10.3389/FMICB.2019.02903/BIBTEX
  • Antoni T, Niederman Michael S, Jean C, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur Respir J. 2017;50(3):1700582. doi:10.1183/13993003.00582-2017
  • Kalil Andre C, Metersky Mark L, Michael K, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111. doi:10.1093/cid/ciw353
  • Shi Y, Huang Y, Tian-Tuo Z, et al. Chinese guidelines for the diagnosis and treatment of hospital-acquired pneumonia and ventilator-associated pneumonia in adults (2018 Edition). J Thorac Dis. 2019;11(6):2581–2616. doi:10.21037/jtd.2019.06.09
  • Boyles Tom H, Adrian B, Calligaro Greg L, et al. Erratum to South African guideline for the management of community-acquired pneumonia in adults. J Thorac Dis. 2018;10(8):E673–E675. doi:10.21037/jtd.2018.07.137
  • Massimo S, Federico C, Yoram K, et al. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J Emerg Surg. 2021;16(1):49. doi:10.1186/s13017-021-00387-8
  • Solomkin Joseph S, Mazuski John E, Bradley John S, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the surgical infection society and the infectious diseases society of America. Clin Infect Dis. 2010;50(2):133–164. doi:10.1086/649554
  • Mazuski John E, Tessier Jeffrey M, May Addison K, et al. The surgical infection society revised guidelines on the management of intra-abdominal infection. Surg Infect. 2017;18(1):1–76. doi:10.1089/sur.2016.261
  • Mermel Leonard A, Michael A, Emilio B, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases Society of America. Clin Infect Dis. 2009;49(1):1–45. doi:10.1086/599376
  • Soichi A, Masashi K, Shin K, Hiroshi S, Toshihiko M. The JAID/JSC guidelines for management of infectious diseases 2017 – sepsis and catheter-related bloodstream infection. J Infect Chemother. 2021;27(5):657–677. doi:10.1016/j.jiac.2019.11.011
  • CDC. Guidelines for prevention of catheter-associated urinary tract infections; 2020.
  • NICE guidelines. Urinary tract infection: antimicrobial prescribing; 2018.
  • Massimo S, Xavier G, Hardcastle Timothy C, et al. WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J Emerg Surg. 2018;13(1):58. doi:10.1186/s13017-018-0219-9
  • Stevens Dennis L, Bisno Alan L, Chambers Henry F, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases Society of America. Clin Infect Dis. 2014;59(2):e10–e52. doi:10.1093/cid/ciu296
  • Alexandra P, Schmid Marie N, Pierre P, et al. Impact of environmental hygiene interventions on healthcare-associated infections and patient colonization: a systematic review. Antimicrob Resist Infect Control. 2022;11(1):38. doi:10.1186/s13756-022-01075-1
  • NHS England and NHS Improvement. Health Technical Memorandum 03–01 Specialised ventilation for healthcare premises Part A: the concept, design, specification, installation and acceptance testing of healthcare ventilation systems; 2021.
  • Tacconelli E. Screening and isolation for infection control. J Hosp Infect. 2009;73(4):371–377. doi:10.1016/j.jhin.2009.05.002
  • Lavallée Jacqueline F, Gray Trish A, Dumville J, Wanda R, Nicky C. The effects of care bundles on patient outcomes: a systematic review and meta-analysis. Implement Sci. 2017;12(1):142. doi:10.1186/s13012-017-0670-0
  • National Institute for Health & Care Excellence (NICE). Surgical site infections: prevention and treatment. NICE. 2022;2019:15.
  • Niels W, Boldingh Quirine JJ, Boermeester Marja A, de Jonge Stijn W. Perioperative care bundles for the prevention of surgical-site infections: meta-analysis. Br J Surg. 2022;109(10):933–942. doi:10.1093/bjs/znac196
  • Evelyn L, Nicolle Lindsay E, Coffin Susan E, et al. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(5):464–479. doi:10.1086/675718
  • Jennifer M, Rogers Mary AM, Krein Sarah L, Fakih Mohamad G, Olmsted Russell N, Sanjay S. Reducing unnecessary urinary catheter use and other strategies to prevent catheter-associated urinary tract infection: an integrative review. BMJ Qual Saf. 2014;23(4):277–289. doi:10.1136/bmjqs-2012-001774