488
Views
5
CrossRef citations to date
0
Altmetric
REVIEW

In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents Against Coronaviruses

ORCID Icon, ORCID Icon, , , , , , ORCID Icon, , & ORCID Icon show all
Pages 2321-2338 | Received 18 Dec 2022, Accepted 16 Mar 2023, Published online: 19 Apr 2023

References

  • Cutler DM, Summers LH. The COVID-19 pandemic and the $16 trillion virus. JAMA. 2020;324(15):1495–1496. doi:10.1001/jama.2020.19759
  • Henderson LR, McShane H, Kiparoglou V. Rapid research response to the COVID-19 pandemic: perspectives from a national institute for health biomedical research centre. Health Res Policy Syst. 2022;20(1):1–4. doi:10.1186/s12961-022-00827-0
  • Gupta AM, Chakrabarti J, Mandal S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 2020;22(10):598–607. doi:10.1016/j.micinf.2020.10.004
  • Pardi N, Weissman D. Development of vaccines and antivirals for combating viral pandemics. Nat Biomed Eng. 2020;4(12):1128–1133. doi:10.1038/s41551-020-00658-w
  • Mohammad T, Shamsi A, Anwar S, et al. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: towards the development of effective COVID-19 therapy. Virus Res. 2020;288:198102. doi:10.1016/j.virusres.2020.198102
  • Ghildiyal R, Prakash V, Chaudhary V, Gupta V, Gabrani R. Phytochemicals as antiviral agents: recent updates. In: Plant-Derived Bioactives. Springer; 2020:279–295.
  • Omrani M, Keshavarz M, Nejad Ebrahimi S, et al. Potential natural products against respiratory viruses: a perspective to develop anti-COVID-19 medicines. Front Pharmacol. 2021;2021:2115.
  • Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479–1508. doi:10.1007/s43440-020-00155-6
  • Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019;14(4):397–412. doi:10.1080/17460441.2019.1581171
  • Sun C, Zhang J, Wei J, et al. Screening, simulation, and optimization design of small molecule inhibitors of the SARS-CoV-2 spike glycoprotein. PLoS One. 2021;16(1):e0245975. doi:10.1371/journal.pone.0245975
  • Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health. 2020;2(12):e667–e676. doi:10.1016/S2589-7500(20)30192-8
  • Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: collection of open natural products database. J Cheminform. 2021;13(1):1–13. doi:10.1186/s13321-020-00478-9
  • Gogineni V, Schinazi RF, Hamann MT. Role of marine natural products in the genesis of antiviral agents. Chem Rev. 2015;115(18):9655–9706. doi:10.1021/cr4006318
  • Al-Karmalawy AA, Farid MM, Mostafa A, et al. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules. 2021;26(21):6559. doi:10.3390/molecules26216559
  • El-Demerdash A, Al-Karmalawy AA, Abdel-Aziz TM, Elhady SS, Darwish KM, Hassan AHE. Investigating the structure-activity relationship of marine natural polyketides as promising SARS-CoV-2 main protease inhibitors. RSC Adv. 2021;11(50):31339–31363. doi:10.1039/d1ra05817g
  • Pauli I, Macedo Timmers LF, Caceres RA, Pereira Soares MB, de Azevedo J, Filgueira W. In silico and in vitro: identifying new drugs. Curr Drug Targets. 2008;9(12):1054–1061. doi:10.2174/138945008786949397
  • Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188–195. doi:10.1038/nrd3368
  • An G, Bartels J, Vodovotz Y. In silico augmentation of the drug development pipeline: examples from the study of acute inflammation. Drug Dev Res. 2011;72(2):187–200. doi:10.1002/ddr.20415
  • Yu R, Chen L, Lan R, Shen R, Li P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int J Antimicrob Agents. 2020;56(2):106012. doi:10.1016/j.ijantimicag.2020.106012
  • Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;181(4):914–921. e10. doi:10.1016/j.cell.2020.04.011
  • Su H, Zhou F, Huang Z, et al. Molecular Insights into Small‐Molecule Drug Discovery for SARS‐CoV‐2. Adv Chem. 2021;133(18):9873–9886. doi:10.1002/ange.202008835
  • Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 2021;10(4):821. doi:10.3390/cells10040821
  • Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. doi:10.1038/s41586-020-2180-5
  • Gao Y, Yan L, Huang Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020;368(6492):779–782. doi:10.1126/science.abb7498
  • Picarazzi FA, Vicenti IA, Saladini F, Zazzi MA, Mori MA. Targeting the RdRp of emerging RNA viruses: the structure-based drug design challenge. Molecules. 2020;25(23):5695. doi:10.3390/molecules25235695
  • Altabella T, Ramirez-Estrada K, Ferrer A. Phytosterol metabolism in plant positive-strand RNA virus replication. Plant Cell Rep. 2021;2021:1–11.
  • Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–D268. doi:10.1093/nar/gkz991
  • Mann KS, Sanfaçon H. Expanding repertoire of plant positive-strand RNA virus proteases. Viruses. 2019;11(1):66. doi:10.3390/v11010066
  • Ul Qamar MT, Alqahtani SM, Alamri MA, Chen -L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313–319. doi:10.1016/j.jpha.2020.03.009
  • Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and function of major SARS-CoV-2 and SARS-CoV Proteins. Bioinform Biol Insights. 2021;15:11779322211025876. doi:10.1177/11779322211025876
  • Chang LJ, Chen TH. NSP16 2’-O-MTase in Coronavirus Pathogenesis: possible Prevention and Treatments Strategies. Viruses. 2021;13(4):538. doi:10.3390/v13040538
  • Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766–788. doi:10.1016/j.apsb.2020.02.008
  • Torres PH, Sodero AC, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. Int J Mol Sci. 2019;20(18):4574. doi:10.3390/ijms20184574
  • Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–3321. doi:10.1021/jm051197e
  • Radoux CJ, Olsson TS, Pitt WR, Groom CR, Blundell TL. Identifying interactions that determine fragment binding at protein hotspots. J Med Chem. 2016;59(9):4314–4325. doi:10.1021/acs.jmedchem.5b01980
  • Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003;32(1):335–373. doi:10.1146/annurev.biophys.32.110601.142532
  • Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267(3):727–748. doi:10.1006/jmbi.1996.0897
  • Lyu C, Chen T, Qiang B, et al. CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean. journal article. Nucleic Acids Res. 2020. doi:10.1093/nar/gkaa763
  • Lyu J, Wang S, Balius TE, et al. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566(7743):224–229. doi:10.1038/s41586-019-0917-9
  • Probst D, Reymond J-L. A probabilistic molecular fingerprint for big data settings. J Cheminform. 2018;10(1):1–12. doi:10.1186/s13321-018-0321-8
  • Zheng X, Zhou D, Li N, Wu T, Lei Y, Shi J. Self-regulated particle swarm multi-task optimization. Sensors. 2021;21(22):7499. doi:10.3390/s21227499
  • Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning. Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation; 2016; GA, USA: Savannah.
  • Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2021;39(16):6249–6264. doi:10.1080/07391102.2020.1796810
  • Zhao Y, Du X, Duan Y, et al. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein Cell. 2021;12(11):877–888. doi:10.1007/s13238-021-00836-9
  • Leissring MA, Lu A, Condron MM, et al. Kinetics of amyloid β-protein degradation determined by novel fluorescence-and fluorescence polarization-based assays. J Biol Chem. 2003;278(39):37314–37320. doi:10.1074/jbc.M305627200
  • Hanna GS, Choo Y-M, Harbit R, et al. Contemporary approaches to the discovery and development of broad-spectrum natural product prototypes for the control of coronaviruses. J Nat Prod. 2021;84(11):3001–3007. doi:10.1021/acs.jnatprod.1c00625
  • Gutierrez DD. Machine Learning and Data Science: An Introduction to Statistical Learning Methods with R. Technics Publications; 2015.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/nature14539
  • Koza JR, Bennett FH, Andre D, Keane MA. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In: Artificial Intelligence in Design’96. Springer; 1996:151–170.
  • Bishop CM, Nasrabadi NM. Pattern Recognition and Machine Learning. Vol. 4. Springer; 2006.
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
  • Chollet F. Keras. Available from: https://keras.io. Accessed March 16, 2023.
  • Hervé Jegou MD, Johnson J. Faiss: a library for efficient similarity search. Facebook; 2020. Available from: https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/. Accessed March 16, 2023.
  • Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8024–8035.
  • Winkler JK, Sies K, Fink C, et al. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations. Eur J Cancer. 2020;127:21–29. doi:10.1016/j.ejca.2019.11.020
  • Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for neuroimaging with scikit-learn. Methods. Front Neuroinform. 2014;8(14). doi:10.3389/fninf.2014.00014
  • Noé F, De Fabritiis G, Clementi C. Machine learning for protein folding and dynamics. Curr Opin Struct Biol. 2020;60:77–84. doi:10.1016/j.sbi.2019.12.005
  • Zhang Y. New Advances in Machine Learning. IntechOpen; 2010.
  • Serra A, Galdi P, Tagliaferri R. Machine learning for bioinformatics and neuroimaging. Wiley Interdiscip Rev Data Min Knowl Discov. 2018;8(5):e1248. doi:10.1002/widm.1248
  • Lantz B. Machine Learning with R: Expert Techniques for Predictive Modeling. Packt publishing ltd; 2019.
  • Feurer M, Klein A, Eggensperger K, Springenberg JT, Blum M, Hutter F. Auto-sklearn: efficient and Robust Automated Machine Learning. In: Hutter F, Kotthoff L, Vanschoren J, editors. Automated Machine Learning: Methods, Systems, Challenges. Springer International Publishing; 2019:113–134.
  • Roelofs R, Shankar V, Recht B, et al. A meta-analysis of overfitting in machine learning. Adv Neural Inf Process Syst. 2019;32:9179–9189.
  • Ng AY. Preventing “overfitting” of cross-validation data. Proceedings of the Fourteenth International Conference on Machine Learning; 1997.
  • Ng VW, Breiman L. Bivariate Variable Selection for Classification Problem. Technical report, Department of Statistics, University of California-Berkeley; 2005. Citeseer.
  • Nanga S, Bawah AT, Acquaye BA, et al. Review of dimension reduction methods. J Data Analysis Inf Process. 2021;9(3):189–231. doi:10.4236/jdaip.2021.93013
  • Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M. CAIMAN (Classification And Influence Matrix Analysis): a new approach to the classification based on leverage-scaled functions. Chemometr Intell Lab Syst. 2007;87(1):3–17. doi:10.1016/j.chemolab.2005.11.001
  • Lo Y-C, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–1546. doi:10.1016/j.drudis.2018.05.010
  • Mapari S, Camarda KV. Use of three-dimensional descriptors in molecular design for biologically active compounds. Curr Opin Chem Eng. 2020;27:60–64. doi:10.1016/j.coche.2019.11.011
  • Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–1912. doi:10.1093/bib/bby061
  • Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM. Applying machine learning techniques for ADME-Tox prediction: a review. journal article. Expert Opin Drug Metab Toxicol. 2014;11(2):259–271. doi:10.1517/17425255.2015.980814
  • Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking. Artif Intell Med. 2015;63(3):135–152. doi:10.1016/j.artmed.2015.02.002
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. journal article. Nat Rev Drug Discov. 2019;18(6):463–477. doi:10.1038/s41573-019-0024-5
  • Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–12. doi:10.1038/s41467-018-05116-5
  • Xie -Q-Q, Zhong L, Pan Y-L, et al. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met. Eur J Med Chem. 2011;46(9):3675–3680. doi:10.1016/j.ejmech.2011.05.031
  • Gao H, Struble TJ, Coley CW, Wang Y, Green WH, Jensen KF. Using machine learning to predict suitable conditions for organic reactions. ACS Cent Sci. 2018;4(11):1465–1476. doi:10.1021/acscentsci.8b00357
  • Cova TF, Pais AA. Deep learning for deep chemistry: optimizing the prediction of chemical patterns. Front Chem. 2019;7:809. doi:10.3389/fchem.2019.00809
  • Prihoda D, Maritz JM, Klempir O, et al. The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability. Nat Prod Rep. 2021;38(6):1100–1108. doi:10.1039/D0NP00055H
  • Reschke M, Mihic-Probst D, van der Horst EH, et al. HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res. 2008;14(16):5188–5197. doi:10.1158/1078-0432.CCR-08-0186
  • Gallardo A, Lerma E, Escuin D, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106(8):1367–1373. doi:10.1038/bjc.2012.85
  • Barbosa AJM, Roque ACA. Free marine natural products databases for biotechnology and bioengineering. journal article. Biotechnol J. 2019;14(11):1800607. doi:10.1002/biot.201800607
  • Davis GDJ, Vasanthi AHR. Seaweed metabolite database (SWMD): a database of natural compounds from marine algae. Bioinformation. 2011;5(8):361–364. doi:10.6026/97320630005361
  • Fagan DH, Yee D. Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13(4):423–429. doi:10.1007/s10911-008-9098-0
  • Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2016;45(D1):D945–D954. doi:10.1093/nar/gkw1074
  • Irwin JJ, Shoichet BK. ZINC − A free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177–182. doi:10.1021/ci049714
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017;46(D1):D1074–D1082. doi:10.1093/nar/gkx1037
  • Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ. 2010;87(11):1123–1124. doi:10.1021/ed100697w
  • Wu Z, Ramsundar B, Feinberg Evan N, et al. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 2018;9(2):513–530. doi:10.1039/C7SC02664A
  • Parks C, Gaieb Z, Amaro RE. An analysis of proteochemometric and conformal prediction machine learning protein-ligand binding affinity models. Front Mol Biosci. 2020;7. doi:10.3389/fmolb.2020.00093
  • Kundu I, Paul G, Banerjee R. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties. journal article. RSC Adv. 2018;8(22):12127–12137. doi:10.1039/c8ra00003d
  • Lahey S-LJ, Rowley CN. Simulating protein–ligand binding with neural network potentials. journal article. Chem Sci. 2020;11(9):2362–2368. doi:10.1039/c9sc06017k
  • Li H, Sze K-H, Lu G, Ballester PJ. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput Mol Sci. 2020;10(5). doi:10.1002/wcms.1465
  • Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics. 2018;34(21):3666–3674. doi:10.1093/bioinformatics/bty374
  • Chmiela S, Sauceda HE, Müller KR, Tkatchenko A. Towards exact molecular dynamics simulations with machine-learned force fields. Nat Commun. 2018;9(1). doi:10.1038/s41467-018-06169-2
  • Terayama K, Iwata H, Araki M, Okuno Y, Tsuda K. Machine learning accelerates MD-based binding pose prediction between ligands and proteins. Bioinformatics. 2017;34(5):770–778. doi:10.1093/bioinformatics/btx638
  • Mahmudpour M, Nabipour I, Keshavarz M, Farrokhnia M. Virtual screening on marine natural products for discovering TMPRSS2 inhibitors. Front Chem. 2021;9:722633. doi:10.3389/fchem.2021.722633
  • Kraker JJ, Hawkins DM, Basak SC, Natarajan R, Mills D. Quantitative Structure–Activity Relationship (QSAR) modeling of juvenile hormone activity: comparison of validation procedures. Chemometr Intell Lab Syst. 2007;87(1):33–42. doi:10.1016/j.chemolab.2006.03.001
  • Dearden JC. Partitioning and lipophilicity in quantitative structure-activity relationships. Environ Health Perspect. 1985;61:203–228. doi:10.1289/ehp.8561203