707
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Relationship Between Drug Resistance Characteristics and Biofilm Formation in Klebsiella Pneumoniae Strains

, , , & ORCID Icon
Pages 985-998 | Received 16 Nov 2022, Accepted 04 Feb 2023, Published online: 17 Feb 2023

References

  • Issakhanian L, Behzadi P. Antimicrobial agents and urinary tract infections. Curr Pharm Des. 2019;25(12):1409–1423. doi:10.2174/1381612825999190619130216
  • Sarshar M, Behzadi P, Ambrosi C, et al. FimH and anti-adhesive therapeutics: a disarming strategy against uropathogens. Antibiotics. 2020;9(7):58. doi:10.3390/antibiotics9070397
  • Ahmadi Z, Noormohammadi Z, Ranjbar R, et al. Prevalence of Tetracycline Resistance Genes tet (A, B, C, 39) in Klebsiella pneumoniae Isolated from Tehran, Iran. Iranian J Med Microbiol. 2022;16(2):141–147. doi:10.30699/ijmm.16.2.141
  • Cusumano JA, Caffrey AR, Daffinee KE, et al. Weak biofilm formation among carbapenem-resistant Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2019;95(4):114877. doi:10.1016/j.diagmicrobio.2019.114877
  • Khan F, Pham DTN, Oloketuyi SF, et al. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol. 2020;21(4):270–286. doi:10.2174/1389201020666191112155905
  • Piperaki ET, Syrogiannopoulos GA, Tzouvelekis LS, et al. Klebsiella pneumoniae: virulence, Biofilm and Antimicrobial Resistance. Pediatr Infect Dis J. 2017;36(10):1002–1005. doi:10.1097/INF.0000000000001675
  • Surgers L, Boyd A, Girard PM, et al. Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae. Int J Med Microbiol. 2019;309(1):13–18. doi:10.1016/j.ijmm.2018.10.008
  • Bellich B, Lagatolla C, Tossi A, et al. Influence of Bacterial Biofilm Polysaccharide Structure on Interactions with Antimicrobial Peptides: a Study on Klebsiella pneumoniae. Int J Mol Sci. 2018;19(6):989. doi:10.3390/ijms19061685
  • Salvia T, Dolma KG, Dhakal OP, et al. Phenotypic Detection of ESBL, AmpC, MBL, and Their Co-occurrence among MDR Enterobacteriaceae Isolates. J Lab Physicians. 2022;14(3):329–335. doi:10.1055/s-0042-1744239
  • Rizvi M, Sami H, Azam M, et al. Reliability of carbapenem inactivation method (CIM) and modified carbapenem inactivation method (mCIM) for detection of OXA-48-like and NDM-1. Indian J Med Microbiol. 2021;39(4):451–456. doi:10.1016/j.ijmmb.2021.07.004
  • Zhu J, Wang T, Chen L, et al. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front Microbiol. 2021;12:642484. doi:10.3389/fmicb.2021.642484
  • Zhan L, Wang S, Guo Y, et al. Outbreak by Hypermucoviscous Klebsiella pneumoniae ST11 Isolates with Carbapenem Resistance in a Tertiary Hospital in China. Front Cell Infect Microbiol. 2017;7:182. doi:10.3389/fcimb.2017.00182
  • Zhao Y, Zhang S, Fang R, et al. Dynamic Epidemiology and Virulence Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Wenzhou, China from 2003 to 2016. Infect Drug Resist. 2020;13:931–940. doi:10.2147/IDR.S243032
  • Dallenne C, Da Costa A, Decre D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–495. doi:10.1093/jac/dkp498
  • Briñas L, Moreno MA, Zarazaga M, et al. Detection of CMY-2, CTX-M-14, and SHV-12 beta-lactamases in Escherichia coli fecal-sample isolates from healthy chickens. Antimicrob Agents Chemother. 2003;47(6):2056–2058. doi:10.1128/AAC.47.6.2056-2058.2003
  • Ferreira RL, Da Silva BCM, Rezende GS, et al. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and beta-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front Microbiol. 2018;9:3198. doi:10.3389/fmicb.2018.03198
  • Yan Q, Zhou M, Zou M, et al. Hypervirulent Klebsiella pneumoniae induced ventilator-associated pneumonia in mechanically ventilated patients in China. Eur J Clin Microbiol Infect Dis. 2016;35(3):387–396. doi:10.1007/s10096-015-2551-2
  • Fu L, Huang M, Zhang X, et al. Frequency of virulence factors in high biofilm formation bla(KPC-2) producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168–172. doi:10.1016/j.micpath.2018.01.030
  • Stepanovic S, Vukovic D, Dakic I, et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–179. doi:10.1016/s0167-7012(00)
  • Khonsari MS, Behzadi P, Foroohi F. The prevalence of type 3 fimbriae in Uropathogenic Escherichia coli isolated from clinical urine samples. Meta Gene. 2021;28. doi:10.1016/j.mgene.2021.100881
  • Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3). doi:10.1128/CMR.00001-19
  • Yang X, Wai-Chi Chan E, Zhang R, et al. A conjugative plasmid that augments virulence in Klebsiella pneumoniae. Nat Microbiol. 2019;4(12):2039–2043. doi:10.1038/s41564-019-0566-7
  • Caneiras C, Lito L, Melo-Cristino J, et al. Community- and Hospital-Acquired Klebsiella pneumoniae Urinary Tract Infections in Portugal: virulence and Antibiotic Resistance. Microorganisms. 2019;7(5):138. doi:10.3390/microorganisms7050138
  • Shah RK, Ni ZH, Sun XY, et al. The Determination and Correlation of Various Virulence Genes, ESBL, Serum Bactericidal Effect and Biofilm Formation of Clinical Isolated Classical Klebsiella pneumoniae and Hypervirulent Klebsiella pneumoniae from Respiratory Tract Infected Patients. Pol J Microbiol. 2017;66(4):501–508. doi:10.5604/01.3001.0010.7042
  • Su SC, Siu LK, Ma L, et al. Community-acquired liver abscess caused by serotype K1 Klebsiella pneumoniae with CTX-M-15-type extended-spectrum beta-lactamase. Antimicrob Agents Chemother. 2008;52(2):804–805. doi:10.1128/AAC.01269-07
  • Derakhshan S, Najar Peerayeh S, Bakhshi B. Association Between Presence of Virulence Genes and Antibiotic Resistance in Clinical Klebsiella Pneumoniae Isolates. Lab Med. 2016;47(4):306–311. doi:10.1093/labmed/lmw030
  • Lev AI, Astashkin EI, Kislichkina AA, et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012-2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health. 2018;112(3):142–151. doi:10.1080/20477724.2018.1460949
  • Walker KA, Miller VL. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in Klebsiella pneumoniae. Curr Opin Microbiol. 2020;54:95–102. doi:10.1016/j.mib.2020.01.006
  • Shen P, Berglund B, Chen Y, et al. Hypervirulence Markers Among Non-ST11 Strains of Carbapenem- and Multidrug-Resistant Klebsiella pneumoniae Isolated From Patients With Bloodstream Infections. Front Microbiol. 2020;11:1199. doi:10.3389/fmicb.2020.01199
  • Dong N, Yang X, Chan EW, et al. Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022;79:103998. doi:10.1016/j.ebiom.2022.103998
  • Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence. 2017;8(7):1111–1123. doi:10.1080/21505594.2017.1317412
  • Chew KL, Lin RTP. Klebsiella pneumoniae in Singapore: hypervirulent Infections and the Carbapenemase Threat. Front Cell Infect Microbiol. 2017;7:515. doi:10.3389/fcimb.2017.00515
  • Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016;80(3):629–661. doi:10.1128/MMBR.00078-15
  • Hsieh PF, Lin TL, Lee CZ, et al. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis. 2008;197(12):1717–1727. doi:10.1086/588383
  • Compain F, Babosan A, Brisse S, et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol. 2014;52(12):4377–4380. doi:10.1128/JCM.02316-14
  • Jung SW, Chae HJ, Park YJ, et al. Microbiological and clinical characteristics of bacteraemia caused by the hypermucoviscosity phenotype of Klebsiella pneumoniae in Korea. Epidemiol Infect. 2013;141(2):334–340. doi:10.1017/S0950268812000933
  • Kim D, Park BY, Choi MH, et al. Antimicrobial resistance and virulence factors of Klebsiella pneumoniae affecting 30 day mortality in patients with bloodstream infection. J Antimicrob Chemother. 2019;74(1):190–199. doi:10.1093/jac/dky397
  • Lin ZW, Zheng JX, Bai B, et al. Characteristics of Hypervirulent Klebsiella pneumoniae: does Low Expression of rmpA Contribute to the Absence of Hypervirulence? Front Microbiol. 2020;11:436. doi:10.3389/fmicb.2020.00436
  • Mbelle NM, Feldman C, Sekyere JO, et al. Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical Klebsiella pneumoniae Isolated from Pretoria, South Africa. Sci Rep. 2020;10(1):1232. doi:10.1038/s41598-020-58012-8
  • Pitout JD, Nordmann P, Laupland KB, et al. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005;56(1):52–59. doi:10.1093/jac/dki166
  • Xiaoyu Q, Qi L. Mechanism of carbapenem-resistant drugs in Klebsiella pneumoniae. J Clin Pediatrics. 2015;33(10):907–911.
  • Li XU, Bei LI. Research progress on the formation mechanism of Klebsiella pneumoniae biofilm[J]. Chine J Pathogen Biol. 2016;11(11):1056–1059. doi:10.13350/j.cjpb.161123
  • Duo Y, Dongyuan M, Songxue W. Relationship analysis between Klebsiella pneumoniae biofilm and bacterial resistance. Chine J Hospital Infectol. 2013;23(12):2785–2786+2851.
  • Bao J, Xie L, Ma Y, et al. Proteomic and Transcriptomic Analyses Indicate Reduced Biofilm-Forming Abilities in Cefiderocol-Resistant Klebsiella pneumoniae. Front Microbiol. 2021;12:778190. doi:10.3389/fmicb.2021.778190
  • Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;4(2):107–118. doi:10.4161/viru.22718