565
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bacterial Epidemiology and Antimicrobial Resistance Profiles of Respiratory Specimens of Children with Pneumonia in Hainan, China

, , , ORCID Icon &
Pages 249-261 | Received 14 Nov 2022, Accepted 02 Jan 2023, Published online: 12 Jan 2023

References

  • McAllister DA, Liu L, Shi T, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. Lancet Glob Health. 2019;7(1):e47–e57. doi:10.1016/S2214-109X(18)30408-X
  • Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals [published correction appears in Lancet. 2017 May 13;389(10082):1884]. Lancet. 2016;388(10063):3027–3035. doi:10.1016/S0140-6736(16)31593-8
  • Feng XL, Theodoratou E, Liu L, et al. Social, economic, political and health system and program determinants of child mortality reduction in China between 1990 and 2006: a systematic analysis. J Glob Health. 2012;2:010405. doi:10.7189/jogh.02.010405
  • World Health Organization. Global and Regional Immunization Profile. Geneva: World Health Organization; 2017.
  • Rudan I, O’Brien KL, Nair H, et al. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health. 2013;3(1):010401. doi:10.7189/jogh.03.010401
  • Zar HJ, Andronikou S, Nicol MP. Advances in the diagnosis of pneumonia in children. BMJ. 2017;358:j2739. doi:10.1136/bmj.j2739
  • Chintu C, Mudenda V, Lucas S, et al. Lung diseases at necropsy in African children dying from respiratory illnesses: a descriptive necropsy study. Lancet. 2002;360(9338):985–990. doi:10.1016/S0140-6736(02)11082-8
  • Santoso P, Sung M, Hartantri Y, et al. MDR pathogens organisms as risk factor of mortality in secondary pulmonary bacterial infections among COVID-19 patients: observational studies in two referral hospitals in West Java, Indonesia. Int J Gen Med. 2022;15:4741–4751. doi:10.2147/IJGM.S359959
  • Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-implications for human health and treatment perspectives. EMBO Rep. 2020;21(12):e51034. doi:10.15252/embr.202051034
  • Xu J. Assessing global fungal threats to humans. mLife. 2022;1(3):223–240. doi:10.1002/mlf2.12036
  • Woolhouse M, Waugh C, Perry MR, Nair H. Global disease burden due to antibiotic resistance - state of the evidence. J Glob Health. 2016;6:010306. doi:10.7189/jogh.06.010306
  • Tiri B, Sensi E, Marsiliani V, et al. Antimicrobial stewardship program, COVID-19, and infection control: spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J Clin Med. 2020;9:E2744.
  • Li J, Wang J, Yang Y, et al. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrob Resist Infect Control. 2020;9:153. doi:10.1186/s13756-020-00819-1
  • Contou D, Claudinon A, Pajot O, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care. 2020;10:119. doi:10.1186/s13613-020-00736-x
  • Sharifipour E, Shams S, Esmkhani M, et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis. 2020;20:646. doi:10.1186/s12879-020-05374-z
  • Fu Y, Yang Q, Xu M, et al. Secondary bacterial infections in critical ill patients with coronavirus disease 2019. Open Forum Infect Dis. 2020;7:ofaa220.
  • Nori P, Szymczak W, Puius Y, et al. Emerging co-pathogens: New Delhi metallo-β-lactamase producing Enterobacteriaceae infections in New York City COVID-19 patients. Int J Antimicrob Agents. 2020;106179. doi:10.1016/j.ijantimicag.2020.106179
  • Farfour E, Lecuru M, Dortet L, et al. Carbapenemase-producing Enterobacterales outbreak: another dark side of COVID-19. Am J Infect Control. 2020;48:1533–1536. doi:10.1016/j.ajic.2020.09.015
  • Posteraro B, Torelli R, Vella A, et al. Pan-echinocandin-resistant Candida glabrata bloodstream infection complicating COVID-19: a fatal case report. J Fungi. 2020;6:163. doi:10.3390/jof6030163
  • Chowdhary A, Tarai B, Singh A, Sharma A. Multidrug-resistant Candida auris infections in critically ill coronavirus disease patients, India, April–July 2020. Emerg Infect Dis. 2020;26:2694–2696. doi:10.3201/eid2611.203504
  • Mohamed A, Hassan T, Trzos-Grzybowska M, et al. Multi-triazole-resistant Aspergillus fumigatus and SARS-CoV-2 co-infection: a lethal combination. Med Mycol Case Rep. 2021;31:11–14. doi:10.1016/j.mmcr.2020.06.005
  • Hughes S, Troise O, Donaldson H, Mughal N, Moore LSP. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clin Microbiol Infect. 2020;26:1395–1399. doi:10.1016/j.cmi.2020.06.025
  • Lai CC, Chen SY, Ko WC, Hsueh PR. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57(4):106324. doi:10.1016/j.ijantimicag.2021.106324
  • Centers for Disease Control and Prevention. Multidrug-resistant organisms (MDRO) management. Available from: https://www.cdc.gov/infectioncontrol/guidelines/mdro/. Accessed September 19, 2022.
  • Zhu X, Ye T, Zhong H, et al. Distribution and drug resistance of bacterial pathogens associated with lower respiratory tract infection in children and the effect of COVID-19 on the distribution of pathogens. Can J Infect Dis Med Microbiol. 2022;1181283. doi:10.1155/2022/1181283
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Wayne, America: Clinical and Laboratory Standards Institute; 2021.
  • GBD 2016 Lower Respiratory Infections Collaborators Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–1210. doi:10.1016/S1473-3099(18)30310-4
  • Su DQ, Huang HL, Zhuo ZQ. Pathogen distribution and bacterial resistance in children with severe pneumonia: a single-center retrospective study. Medicine. 2021;100(35):e27128. doi:10.1097/MD.0000000000027128
  • Krishnan A, Amarchand R, Gupta V, et al. Epidemiology of acute respiratory infections in children - preliminary results of a cohort in a rural north Indian community. BMC Infect Dis. 2015;15:462. doi:10.1186/s12879-015-1188-1
  • Dunne EM, Murad C, Sudigdoadi S, et al. Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: a cross-sectional study. PLoS One. 2018;13(4):e0195098. doi:10.1371/journal.pone.0195098
  • Musher DM, Jesudasen SS, Barwatt JW, Cohen DN, Moss BJ, Rodriguez-Barradas MC. Normal respiratory flora as a cause of community-acquired pneumonia. Open Forum Infect Dis. 2020;7(9):ofaa307. doi:10.1093/ofid/ofaa307
  • Xu J. Origins and spread of plant fungal and oomycete disease outbreaks. J Plant Protect. 2022;49(1):283–297.
  • Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011;53(7):e25–e76. doi:10.1093/cid/cir531
  • Jochem WC, Razzaque A, Root ED. Effects of health intervention programs and arsenic exposure on child mortality from acute lower respiratory infections in rural Bangladesh. Int J Health Geogr. 2016;15(1):32. doi:10.1186/s12942-016-0061-9
  • Troeger C, Forouzanfar M, Rao PC; GBD 2015 LRI Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17(11):1133–1161. doi:10.1016/S1473-3099(17)30396-1
  • Torumkuney D, Chaiwarith R, Reechaipichitkul W, et al. Results from the Survey of Antibiotic Resistance (SOAR) 2012–14 in Thailand, India, South Korea and Singapore. J Antimicrob Chemother. 2016;71(Suppl1):i3–i19. doi:10.1093/jac/dkw073
  • Vaez H, Sahebkar A, Pourfarzi F, Yousefi-Avarvand A, Khademi F. Prevalence of antibiotic resistance of Haemophilus influenzae in Iran- a meta-analysis. Iran J Otorhinolaryngol. 2019;31(107):349–357. doi:10.22038/ijorl.2019.34363.2137
  • Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020. Microbiol Spectr. 2021;9(3):e0028321. doi:10.1128/Spectrum.00283-21
  • Mitsumoto-Kaseida F, Murata M, Toyoda K, et al. Clinical and pathogenic features of SCCmec type II and IV methicillin-resistant Staphylococcus aureus in Japan. J Infect Chemother. 2017;23(2):90–95. doi:10.1016/j.jiac.2016.11.001
  • García LA, Torres C, López AR, Rodríguez CO, Espinosa JO, Valencia CS. Staphylococcus spp. from wild mammals in Aragón (Spain): antibiotic resistance status. J Vet Res. 2020;64(3):373–379. doi:10.2478/jvetres-2020-0057
  • Hu F, Wang F, Jiang X, et al. Report of CHINET antimicrobial resistance surveillance program in 2015. Chin J Infect Chemother. 2016;16(6):685–694.
  • Hu F, Zhu D, Wang F, et al. CHINET surveillance of bacterial resistance across China: report of the results in 2016. Chin J Infect Chemother. 2016;17(5):481–491.
  • Wang Y, Zhang Q, Jin Y, Jin X, Yu J, Wang K. Epidemiology and antimicrobial susceptibility profiles of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli in China. Braz J Microbiol. 2019;50(3):669–675. doi:10.1007/s42770-019-00081-7
  • Rodríguez-Baño J, Alcalá JC, Cisneros JM, et al. Community Infections Caused by Extended-Spectrum β-Lactamase–Producing Escherichia coli. Arch Intern Med. 2008;168(17):1897–1902. doi:10.1001/archinte.168.17.1897