327
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genotypic and Phenotypic Characterization of Some psms Hypervirulent Clinical Isolates of Staphylococcus aureus in a Tertiary Hospital in Hefei, Anhui

ORCID Icon, , ORCID Icon, , &
Pages 1471-1484 | Received 30 Nov 2022, Accepted 17 Feb 2023, Published online: 15 Mar 2023

References

  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi:10.1128/CMR.00134-14
  • Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10(3):505–520. doi:10.1128/CMR.10.3.505
  • Dziewanowska K, Patti JM, Deobald CF, Bayles KW, Trumble WR, Bohach GA. Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun. 1999;67(9):4673–4678. doi:10.1128/IAI.67.9.4673-4678.1999
  • Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin Microbiol Rev. 2000;13(1):16–34. doi:10.1128/CMR.13.1.16
  • Tasneem U, Mehmood K, Majid M, Ullah SR, Andleeb S. Methicillin resistant Staphylococcus aureus: a brief review of virulence and resistance. J Pak Med Assoc. 2022;72(3):509–515. doi:10.47391/JPMA.0504
  • Li M, Diep BA, Villaruz AE, et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2009;106(14):5883–5888. doi:10.1073/pnas.0900743106
  • Li M, Cheung GY, Hu J, et al. Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. J Infect Dis. 2010;202(12):1866–1876. doi:10.1086/657419
  • Lina G, Bohach GA, Nair SP, et al. Standard nomenclature for the superantigens expressed by staphylococcus. J Infect Dis. 2004;189(12):2334–2336. doi:10.1086/420852
  • Wang R, Braughton KR, Kretschmer D, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510–1514. doi:10.1038/nm1656
  • Lamand V, Dauwalder O, Tristan A, et al. Epidemiological data of staphylococcal scalded skin syndrome in France from 1997 to 2007 and microbiological characteristics of Staphylococcus aureus associated strains. Clin Microbiol Infect. 2012;18(12):E514–521. doi:10.1111/1469-0691.12053
  • Gustafsson E, Oscarsson J. Maximal transcription of aur (aureolysin) and sspA (serine protease) in Staphylococcus aureus requires staphylococcal accessory regulator R (sarR) activity. Fems Microbiol Lett. 2008;284(2):158–164. doi:10.1111/j.1574-6968.2008.01198.x
  • Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol. 2014;4:171. doi:10.3389/fcimb.2014.00171
  • Peacock SJ, Moore CE, Justice A, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002;70(9):4987–4996. doi:10.1128/IAI.70.9.4987-4996.2002
  • Perkins DN, Vaudaux P, Vaudaux P, Höök M, Foster TJ, Foster TJ. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol. 1998;30(2):245–257. doi:10.1046/j.1365-2958.1998.01050.x
  • Cooper LZ, Madoff MA, Weinstein L. Heat stability and species range of purified staphylococcal alpha-toxin. J Bacteriol. 1966;91(5):1686–1692. doi:10.1128/jb.91.5.1686-1692.1966
  • Grimminger F, Rose F, Sibelius U, et al. Human endothelial cell activation and mediator release in response to the bacterial exotoxins Escherichia coli hemolysin and staphylococcal alpha-toxin. J Immunol. 1997;159(4):1909–1916. doi:10.4049/jimmunol.159.4.1909
  • Inoshima I, Inoshima N, Wilke GA, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med. 2011;17(10):1310–U1196. doi:10.1038/nm.2451
  • Nygaard TK, Pallister KB, DuMont AL, et al. Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS One. 2012;7(5):e36532. doi:10.1371/journal.pone.0036532
  • Gouaux JE, Braha O, Hobaugh MR, et al. Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proce National Acad Sci. 1994;91(26):12828–12831. doi:10.1073/pnas.91.26.12828
  • Prévost G, Mourey L, Colin DA, Menestrina GJ. Staphylococcal pore-forming toxins. Pore-Forming Toxins. 2001;257:53–83.
  • Spaan AN, Vrieling M, Wallet P, et al. The staphylococcal toxins gamma-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun. 2014;5:5438. doi:10.1038/ncomms6438
  • Spaan AN, Reyes-Robles T, Badiou C, et al. Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe. 2015;18(3):363–370. doi:10.1016/j.chom.2015.08.001
  • Cheung GY, Duong AC, Otto M. Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis. Microbes Infect. 2012;14(4):380–386. doi:10.1016/j.micinf.2011.11.013
  • Rasigade JP, Trouillet-Assant S, Ferry T, et al. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PLoS One. 2013;8(5):e63176. doi:10.1371/journal.pone.0063176
  • Surewaard BG, de Haas CJ, Vervoort F, et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol. 2013;15(8):1427–1437. doi:10.1111/cmi.12130
  • Periasamy S, Joo HS, Duong AC, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A. 2012;109(4):1281–1286. doi:10.1073/pnas.1115006109
  • Falugi F, Kim HK, Missiakas DM, Schneewind O. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. Mbio. 2013;4(5):e00575–00513. doi:10.1128/mBio.00575-13
  • Grella DK, Castellino FJ. Activation of human plasminogen by staphylokinase. direct evidence that preformed plasmin is necessary for activation to occur. Blood. 1997;89(5):1585–1589. doi:10.1182/blood.V89.5.1585
  • Lijnen HR, Van Hoef B, Collen D. Interaction of staphylokinase with different molecular forms of plasminogen. Eur J Biochem. 1993;211(1–2):91–97. doi:10.1111/j.1432-1033.1993.tb19873.x
  • Kwiecinski J, Peetermans M, Liesenborghs L, et al. Staphylokinase control of staphylococcus aureus biofilm formation and detachment through host plasminogen activation. J Infect Dis. 2016;213(1):139–148. doi:10.1093/infdis/jiv360
  • Pence MA, Haste NM, Meharena HS, et al. Beta-lactamase repressor BlaI modulates staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS One. 2015;10(8):e0136605. doi:10.1371/journal.pone.0136605
  • Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in staphylococcus aureus. Annu Rev Biochem. 2015;84:577–601. doi:10.1146/annurev-biochem-060614-034516
  • Farrell DJ, Morrissey I, Bakker S, Morris L, Buckridge S, Felmingham D. Molecular epidemiology of multiresistant Streptococcus pneumoniae with both erm(B)- and mef(A)-mediated macrolide resistance. J Clin Microbiol. 2004;42(2):764–768. doi:10.1128/JCM.42.2.764-768.2004
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–260. doi:10.1128/MMBR.65.2.232-260.2001
  • Thompson MK, Keithly ME, Goodman MC, et al. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Biochemistry. 2014;53(4):755–765. doi:10.1021/bi4015852
  • Novick RP, Richmond MH. Nature and interactions of the genetic elements governing penicillinase synthesis in staphylococcus aureus. J Bacteriol. 1965;90:467–480. doi:10.1128/jb.90.2.467-480.1965
  • Kuroda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001;357(9264):1225–1240. doi:10.1016/S0140-6736(00)04403-2
  • Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38(3):1008–1015. doi:10.1128/JCM.38.3.1008-1015.2000
  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. doi:10.1371/journal.pcbi.1005595
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi:10.1093/bioinformatics/btu153
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644. doi:10.1093/jac/dks261
  • Wyres KL, Wick RR, Gorrie C, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom. 2016;2(12):e000102. doi:10.1099/mgen.0.000102
  • Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524. doi:10.1186/s13059-014-0524-x
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W259. doi:10.1093/nar/gkz239
  • Feng Y, Zou S, Chen H, Yu Y, Ruan Z. BacWGSTdb 2.0: a one-stop repository for bacterial whole-genome sequence typing and source tracking. Nucleic Acids Res. 2021;49(D1):D644–D650. doi:10.1093/nar/gkaa821
  • Kim YG, Lee JH, Kim SI, Baek KH, Lee J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol. 2015;195:30–39. doi:10.1016/j.ijfoodmicro.2014.11.028
  • Krishnamurthi VR, Niyonshuti II, Chen J, Wang Y. A new analysis method for evaluating bacterial growth with microplate readers. PLoS One. 2021;16(1):e0245205. doi:10.1371/journal.pone.0245205
  • Menard G, Rouillon A, Ghukasyan G, Emily M, Felden B, Donnio PY. Galleria mellonella larvae as an infection model to investigate sRNA-mediated pathogenesis in staphylococcus aureus. Front Cell Infect Microbiol. 2021;11:631710. doi:10.3389/fcimb.2021.631710
  • Beenken KE, Dunman PM, McAleese F, et al. Global gene expression in Staphylococcus aureus biofilms. J Bacteriol. 2004;186(14):4665–4684. doi:10.1128/JB.186.14.4665-4684.2004
  • Fitzpatrick F, Humphreys H, O’Gara JP. The genetics of staphylococcal biofilm formation—will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infec. 2005;11(12):967–973. doi:10.1111/j.1469-0691.2005.01274.x
  • Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–228. doi:10.1007/978-3-540-75418-3_10
  • Cue D, Lei MG, Luong TT, et al. Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol. 2009;191(20):6363–6373. doi:10.1128/JB.00913-09
  • Sayed-Zaki ME, El-Sabbagh AM, Hammam H. Molecular study of mec-phenol soluble modulin gene in methicillin resistant staphylococcus aureus. Clin Lab. 2021;67:9. doi:10.7754/Clin.Lab.2020.200947
  • Yu D, Zhao L, Xue T, Sun B. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol. 2012;12:288. doi:10.1186/1471-2180-12-288
  • Hanzelmann D, Joo HS, Franz-Wachtel M, et al. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun. 2016;7:12304. doi:10.1038/ncomms12304
  • Le KY, Villaruz AE, Zheng Y, et al. Role of phenol-soluble modulins in staphylococcus epidermidis biofilm formation and infection of indwelling medical devices. J Mol Biol. 2019;431(16):3015–3027. doi:10.1016/j.jmb.2019.03.030
  • Nakagawa S, Matsumoto M, Katayama Y, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22(5):667–677.e665. doi:10.1016/j.chom.2017.10.008
  • Davido B, Saleh-Mghir A, Laurent F, et al. Phenol-soluble modulins contribute to early sepsis dissemination not late local USA300-osteomyelitis severity in rabbits. PLoS One. 2016;11(6):e0157133. doi:10.1371/journal.pone.0157133
  • Karauzum H, Venkatasubramaniam A, Adhikari RP, et al. IBT-V02: a multicomponent toxoid vaccine protects against primary and secondary skin infections caused by staphylococcus aureus. Front Immunol. 2021;12:624310. doi:10.3389/fimmu.2021.624310