354
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Characteristics of Extended-Spectrum β-Lactamases (ESBLs)-Producing Escherichia coli in Bloodstream Infection

, , , ORCID Icon & ORCID Icon
Pages 2043-2060 | Received 13 Dec 2022, Accepted 16 Mar 2023, Published online: 06 Apr 2023

References

  • Kobayashi T, Ikeda M, Okada Y, et al. Clinical and microbiological characteristics of recurrent Escherichia coli bacteremia. Microbiol Spectr. 2021;9(3):e0139921. doi:10.1128/Spectrum.01399-21
  • Behzadi P, Najafi A, Behzadi E, Ranjbar R. UMicroarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction. Cent Eur J Urol. 2016;69(1):105–111. doi:10.5173/ceju.2016.654
  • Issakhanian L, Behzadi P. Antimicrobial agents and urinary tract infections. Curr Pharm Des. 2019;25(12):1409–1423. doi:10.2174/1381612825999190619130216
  • Kondo T, Sakamoto K, Morinaga Y, et al. Escherichia coli ST131 isolated from urological patients can acquire plasmid-mediated extended spectrum β-lactamase from other bacteria with high frequency. Int J Urol. 2022;29(6):587–594. doi:10.1111/iju.14845
  • Mostafa HH, Cameron A, Taffner SM, et al. Genomic surveillance of ceftriaxone-resistant Escherichia coli in Western New York suggests the extended-spectrum β-lactamase blaCTX-M-27 is emerging on distinct plasmids in ST38. Front Microbiol. 2020;11:1747. doi:10.3389/fmicb.2020.01747
  • Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686. doi:10.1128/CMR.18.4.657-686.2005
  • Sharma J, Sharma M, Ray P. Detection of TEM & SHV genes in Escherichia coli & Klebsiella pneumoniae isolates in a tertiary care hospital from India. Indian J Med Res. 2010;132:332–336.
  • Gomi R, Yamamoto M, Tanaka M, Matsumura Y. Chromosomal integration of blaCTX-M genes in diverse Escherichia coli isolates recovered from river water in Japan. Curr Res Microb Sci. 2022;3:100144. doi:10.1016/j.crmicr.2022.100144
  • Pourmohsen M, Shakib P, Zolfaghari MR. The prevalence of bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M, and class I and II integrons genes in Aeromonas hydrophila isolated from clinical specimens of Qom, Iran. Clin Lab. 2023;69(1). doi:10.7754/Clin.Lab.2022.220314
  • Martischang R, François P, Cherkaoui A, et al. Epidemiology of ESBL-producing Escherichia coli from repeated prevalence studies over 11 years in a long-term-care facility. Antimicrob Resist Infect Control. 2021;10(1):148. doi:10.1186/s13756-021-01013-7
  • Hertz FB, Jansåker F, Okon KO, et al. ESBL-production in Escherichia coli and Klebsiella pneumoniae isolates from Nigeria. Microbiologyopen. 2019;8(9):e00816. doi:10.1002/mbo3.816
  • CDC. Antibiotic resistance threats in the United States; 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed March 20, 2023.
  • Mendes RE, Jones RN, Woosley LN, et al. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis. 2019;6(Suppl 1):S69–S78. doi:10.1093/ofid/ofz004
  • Hu F, Guo Y, Zhu D, et al. Surveillance of bacterial drug resistance in China in 2021. J Chin Infect Chemother. 2022;22(05):521–530. doi:10.16718/j.1009-7708.2022.05.001
  • Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62(10):e01076–18. doi:10.1128/AAC.01076-18
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-09
  • Pongchaikul P, Mongkolsuk P. Comprehensive analysis of imipenemase (IMP)-type metallo-β-lactamase: a global distribution threatening Asia. Antibiotics. 2022;11(2):236. doi:10.3390/antibiotics11020236
  • Behzadi P, García-Perdomo HA, Karpiński TM, Issakhanian L. Metallo-ß-lactamases: a review. Mol Biol Rep. 2020;47(8):6281–6294. doi:10.1007/s11033-020-05651-9
  • Palacios AR, Mojica MF, Giannini E, et al. The reaction mechanism of metallo-β-lactamases is tuned by the conformation of an active-site mobile loop. Antimicrob Agents Chemother. 2018;63(1):e01754–18. doi:10.1128/AAC.01754-18
  • Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW. The continuing challenge of metallo-β-lactamase inhibition: mechanism matters. Trends Pharmacol Sci. 2018;39(7):635–647. doi:10.1016/j.tips.2018.03.007
  • Sianipar O, Asmara W, Dwiprahasto I, Mulyono B. Mortality risk of bloodstream infection caused by either Escherichia coli or Klebsiella pneumoniae producing extended-spectrum β-lactamase: a prospective cohort study. BMC Res Notes. 2019;12(1):719. doi:10.1186/s13104-019-4751-9
  • Behzadi P. Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol (Praha). 2020;65(1):45–65. doi:10.1007/s12223-019-00719-x
  • Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol. 2014;65:337–372. doi:10.1016/bs.ampbs.2014.08.006
  • Tabasi M, Asadi Karam MR, Habibi M, Yekaninejad MS, Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect. 2015;6(4):261–268. doi:10.1016/j.phrp.2015.08.002
  • Hozzari A, Behzadi P, Kerishchi Khiabani P, Sholeh M, Sabokroo N. Clinical cases, drug resistance, and virulence genes profiling in uropathogenic Escherichia coli. J Appl Genet. 2020;61(2):265–273. doi:10.1007/s13353-020-00542-y
  • Da Silva GJ, Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012;3(1):18–28. doi:10.4161/viru.3.1.18382
  • Biggel M, Moons P, Nguyen MN, Goossens H, Van Puyvelde S. Convergence of virulence and antimicrobial resistance in increasingly prevalent Escherichia coli ST131 papGII+ sublineages. Commun Biol. 2022;5(1):752. doi:10.1038/s42003-022-03660-x
  • Lee S, Yu JK, Park K, Oh EJ, Kim SY, Park YJ. Phylogenetic groups and virulence factors in pathogenic and commensal strains of Escherichia coli and their association with blaCTX-M. Ann Clin Lab Sci. 2010;40(4):361–367.
  • Wang S, Zhao SY, Xiao SZ, et al. Antimicrobial resistance and molecular epidemiology of escherichia coli causing bloodstream infections in three hospitals in Shanghai, China. PLoS One. 2016;11(1):e0147740. doi:10.1371/journal.pone.0147740
  • Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181(1):261–272. doi:10.1086/315217
  • Tartof SY, Solberg OD, Manges AR, Riley LW. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol. 2005;43(12):5860–5864. doi:10.1128/JCM.43.12.5860-5864.2005
  • Behzadi P, Ranjbar R. DNA microarray technology and bioinformatic web services. Acta Microbiol Immunol Hung. 2019;66(1):19–30. doi:10.1556/030.65.2018.028
  • Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555–4558. doi:10.1128/AEM.66.10.4555-4558.2000
  • Paul D, Dhar D, Chakravarty A, et al. Transcriptional analysis of IncF repB-mediated bla OXA-48-positive plasmid characterized from Escherichia coli ST448. Microb Drug Resist. 2021;27(5):596–601. doi:10.1089/mdr.2019.0486
  • Carattoli A, Bertini A, Villa L, et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219–228. doi:10.1016/j.mimet.2005.03.018
  • Kondore N. Identification of pathogenic bacteria in bloodstream infection by mass spectrometry, drug resistance monitoring and clinical characteristics. Chin Modern Doctors. 2021;59(21):114–119.
  • Phan MD, Peters KM, Alvarez Fraga L, et al. Plasmid-mediated ciprofloxacin resistance imparts a selective advantage on Escherichia coli ST131. Antimicrob Agents Chemother. 2022;66(1):e0214621. doi:10.1128/AAC.02146-21
  • Kadri SS, Lai YL, Warner S, et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect Dis. 2021;21(2):241–251. doi:10.1016/S1473-3099(20)30477-1
  • Ibrahim ME, Algak TB, Abbas M, et al. Emergence of bla TEM, bla CTX‑M, bla SHV and bla OXA genes in multidrug‑resistant Enterobacteriaceae and Acinetobacter baumannii in Saudi Arabia. Exp Ther Med. 2021;22(6):1450. doi:10.3892/etm.2021.10885
  • Bauernfeind A, Grimm H, Schweighart S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection. 1990;18(5):294–298. doi:10.1007/BF01647010
  • Rana C, Rajput S, Behera M, et al. Global epidemiology of CTX-M-type β-lactam resistance in human and animal. Comp Immunol Microbiol Infect Dis. 2022;86:101815. doi:10.1016/j.cimid.2022.101815
  • Liu W, Chen L, Li H, et al. Novel CTX-M {beta}-lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. J Antimicrob Chemother. 2009;63(5):895–900. doi:10.1093/jac/dkp068
  • Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165–174. doi:10.1093/jac/dkl483
  • Song W, Lee H, Lee K, et al. CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum beta-lactamase in clinical isolates of Escherichia coli from Korea. J Med Microbiol. 2009;58(Pt2):261–266. doi:10.1099/jmm.0.004507-0
  • Wang R, van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9(1):1179. doi:10.1038/s41467-018-03205-z
  • Yang X, Wai-Chi Chan E, Zhang R, et al. A conjugative plasmid that augments virulence in Klebsiella pneumoniae. Nat Microbiol. 2019;4(12):2039–2043. doi:10.1038/s41564-019-0566-7
  • Rozwandowicz M, Brouwer MSM, Fischer J, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73(5):1121–1137. doi:10.1093/jac/dkx488
  • Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5(1):58–65. doi:10.1111/1758-2229.12019
  • Millán Y, Araque M, Ramírez A. Distribution of phylogenetic groups, virulence factors and antimicrobial susceptibility in strains of uropathogenic Escherichia coli. Rev Chilena Infectol. 2020;37(2):117–123. doi:10.4067/s0716-10182020000200117
  • Zeng S, Luo J, Li X, et al. Molecular epidemiology and characteristics of CTX-M-55 extended-spectrum β-lactamase-producing Escherichia coli from Guangzhou, China. Front Microbiol. 2021;12:730012. doi:10.3389/fmicb.2021.730012
  • Maciel JF, Matter LB, Trindade MM, et al. Virulence factors and antimicrobial susceptibility profile of extraintestinal Escherichia coli isolated from an avian colisepticemia outbreak. Microb Pathog. 2017;103:119–122. doi:10.1016/j.micpath.2016.12.020
  • Aluta RP, Borges CA, Beraldo LG, et al. Frequencies of virulence genes and pulse field gel electrophoresis fingerprints in Escherichia coli isolates from canine pyometra. Vet J. 2014;202(2):393–395. doi:10.1016/j.tvjl.2014.08.016
  • Johnson JR, O’Bryan TT. Detection of the Escherichia coli group 2 polysaccharide capsule synthesis Gene kpsM by a rapid and specific PCR-based assay. J Clin Microbiol. 2004;42(4):1773–1776. doi:10.1128/JCM.42.4.1773-1776.2004
  • Wang Y. The function of OmpA in Escherichia coli. Biochem Biophys Res Commun. 2002;292(2):396–401. doi:10.1006/bbrc.2002.6657
  • Barnich N, Bringer MA, Claret L, Darfeuille-Michaud A. Involvement of lipoprotein NlpI in the virulence of adherent invasive Escherichia coli strain LF82 isolated from a patient with Crohn’s disease. Infect Immun. 2004;72(5):2484–2493. doi:10.1128/IAI.72.5.2484-2493.2004
  • Pinheiro JJ, Gazal LES, de Araujo GO, et al. Occurrence of genes associated with virulence in Escherichia coli isolates from chicken carcasses at different stages of processing at a slaughterhouse. Braz J Microbiol. 2021;52(4):2413–2420. doi:10.1007/s42770-021-00549-5
  • Hung W-T, Cheng M-F, Tseng F-C. Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: the role of virulence genes. J Microbiol Immunol Infect. 2019;52(6):947–955. doi:10.1016/j.jmii.2019.03.005