343
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Fractions 14 and 36K of Metabolite Extract Streptomyces hygroscopicus subsp. Hygroscopicus Have Antimalarial Activities Against Plasmodium berghei in vitro

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 2973-2985 | Received 10 Dec 2022, Accepted 14 Feb 2023, Published online: 12 May 2023

References

  • WHO. World Malaria Report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.
  • Orish VN, Akake K, Lokpo ISY, et al. Evaluating the impact of COVID-19 pandemic on complicated malaria admissions and outcomes in the paediatric ho teaching hospital of the Volta Region of Ghana. PLOS Global Public Health. 2022;2(9):e0000509. doi:10.1371/journal.pgph.0000509
  • Weiss DJ, Bertozzi-Villa A, Rumisha SF, et al. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis. Lancet Infect Dis. 2021;21(1):59. doi:10.1016/S1473-3099(20)30700-3
  • Zawawi A, Alghanmi M, Alsaady I, Gattan H, Zakai H, Couper K. The impact of COVID-19 pandemic on malaria elimination. Parasite Epidemiol Control. 2020;11:e00187. doi:10.1016/j.parepi.2020.e00187
  • Landier J, Parker DM, Thu AM, et al. The role of early detection and treatment in malaria elimination. Malar J. 2016;15(1):1–8. doi:10.1186/s12936-016-1399-y
  • Suresh N, Haldar K. Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Curr Opin Pharmacol. 2018;42:46. doi:10.1016/j.coph.2018.06.003
  • Rogerson SJ. Management of malaria in pregnancy. Indian J Med Res. 2017;146(3):328. doi:10.4103/ijmr.IJMR_1304_17
  • Ouattara A, Laurens MB. Vaccines against malaria. Clin Infect Dis. 2015;60(6):930. doi:10.1093/cid/ciu954
  • Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. Febs J. 2017;284(16):2569. doi:10.1111/febs.14127
  • Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of Actinomycetes. J Genet Eng Biotechnol. 2021;19(1). doi:10.1186/s43141-021-00156-9
  • Chen J, Xu L, Zhou Y, Han B. Natural products from Actinomycetes associated with marine organisms. Mar Drugs. 2021;19(11):629. doi:10.3390/md19110629
  • Ahmad SJ, Abdul Rahim MBH, Baharum SN, Baba MS, Zin NM. Discovery of antimalarial drugs from Streptomycetes metabolites using a metabolomic approach. J Trop Med. 2017;2017. doi:10.1155/2017/2189814
  • Fitri LE, Alkarimah A, Cahyono AW. Lady wahyudha ngatiril, Endharti agustina tri, Nugraha RYB. Effect of metabolite extract of Streptomyces hygroscopicus subsp. hygroscopicus on Plasmodium falciparum 3D7 in vitro. Iran J Parasitol. 2019;14(3):444–452.
  • Nugraha RYB, Faratisha IFD, Mardhiyyah K, et al. Antimalarial properties of isoquinoline derivative from Streptomyces hygroscopicus subsp. Hygroscopicus: an in silico approach. Biomed Res Int. 2020;2020:1–15. doi:10.1155/2020/6135696
  • Fitri LE, Putri AM, Erwan NE, Putri FF, Nugraha RYB. Antimalarial properties of Streptomyces hygroscopicus subsp hygroscopicus secondary metabolite active fractions: in silico and in vivo analysis. Int J Pharm Res. 2021;13(1):2553–2567.
  • Violita M, Widyastuti A, Astami CP, Yudhinata R, Nugraha B, Khasanah U. Exploration of Streptomyces hygroscopicus secondary metabolite compound as a development of antimalarial drug candidate. Phcog Commn. 2022;12(1):2–6. doi:10.5530/pc.2022.1.2
  • Ariel DG, Winarsih S, Putri FF, et al. Optimization of combination of N-Hexane solution and ethyl acetate on secondary metabolite compounds profile of Streptomyces hygroscopicus. J Kedokt Brawijaya. 2021;31(3):186–192. doi:10.21776/ub.jkb.2021.031.03.11
  • Cahyono AW, Fitri LE, Yudhinata R, Nugraha B, Aulia R. Non-toxic fractions of Streptomyces hygroscopicus Subsp. hygroscopicus metabolite suppressed the growth of Plasmodium falciparum in Vitro Possibly through L-malate: quinone Oxidoreductase (Pf MQO) mitochondrial enzyme inhibition. Sys Rev Pharm. 2020;11(10):524–531.
  • Ziegler HL, Franzyk H, Sairafianpour M, et al. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues. Bioorg Med Chem. 2004;12(1):119–127. doi:10.1016/j.bmc.2003.10.010
  • Goulart HR, Kimura EA, Peres VJ, Couto AS, Duarte FAA, Katzin AM. Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. Antimicrob Agents Chemother. 2004;48(7):2502. doi:10.1128/AAC.48.7.2502-2509.2004
  • Gabriel HB, Sussmann RA, Kimura EA, et al. Terpenes as potential antimalarial drugs. In: Terpenes and Terpenoids. IntechOpen;; 2018.
  • Onambele LA, Riepl H, Fischer R, Pradel G, Prokop A, Aminake MN. Synthesis and evaluation of the antiplasmodial activity of tryptanthrin derivatives. Int J Parasitol Drugs Drug Resist. 2015;5(2):48. doi:10.1016/j.ijpddr.2015.03.002
  • Delves MJ, Ruecker A, Straschil U, et al. Male and female Plasmodium falciparum mature gametocytes show different responses to antimalarial drugs. Antimicrob Agents Chemother. 2013;57(7):3268. doi:10.1128/AAC.00325-13
  • Espíndola MR, Varotti FD, Aguiar AC, Andrade SN, Rocha EM. In vitro assessment for cytotoxicity screening of new antimalarial candidates. Braz J Pharm Sci. 2022;58. doi:10.1590/s2175-97902022e18308
  • Ekwall B, Silano V, Zucco F. Chapter 7 - toxicity tests with mammalian cell cultures. In: Short-Term Toxicity Tests for Non-Genotoxic Effects. John Wiley \& Sons Ltd; 1990:75–98.
  • Cooper GM. The development and causes of cancer. In: The Cell: A Molecular Approach. Sinauer Associates; 2000.
  • Suberu JO, Romero-Canelón I, Sullivan N, Lapkin AA, Barker GC. Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells. ChemMedChem. 2014;9(12):2791–2797. doi:10.1002/cmdc.201402285
  • Duarte D, Vale N. New trends for antimalarial drugs: synergism between antineoplastics and antimalarials on breast cancer cells. Biomolecules. 2020;10(12):1–20. doi:10.3390/biom10121623
  • Zin NNINM, Mohamad MN, Roslan K, et al. In vitro antimalarial and toxicological activities of Quercus infectoria (Olivier) gall extracts. Malays J Med Sci. 2020;27(4):36–50. doi:10.21315/mjms2020.27.4.4
  • Salempa P, Muharram M, Jumadi O, Pratiwi DE, Azis M, Amaliah N. Cytotoxicity test of methanol extract of belakang susu (Scindapsus pictus Hassk.) against MCF-7 breast cancer cells. Indones J Fundam Sci. 2022;8(1):38–42.
  • Goodarzi S, Nateghpour M, Asgharian P, et al. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract. Iran J Basic Med Sci. 2017;20(12):1318–1323. doi:10.22038/IJBMS.2017.9554
  • Sudha S, Masilamani SM. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4. Asian Pac J Trop Biomed. 2012;2(10):770. doi:10.1016/S2221-1691(12)60227-5
  • Shepherd MD, Kharel MK, Bosserman MA, Rohr J. Laboratory maintenance of Streptomyces species. Curr Protoc Microbiol. 2010;Chapter 10:Unit10E.1.
  • Sharma H, Parihar L. Antifungal activity of extracts obtained from Actinomycetes. J Yeast Fungal Res. 2010;1(December):197–200.
  • Li Q, Xie LH, Zhang J, Pybus BS. Identification and assessment of Plasmodium berghei merozoites and cell cycle by flow cytometry. Mil Med. 2021;186(Supplement_1):108–115. doi:10.1093/milmed/usaa272
  • Nugraha RYB, Alkarimah A. Metabolite extract of Streptomyces hygroscopicus hygroscopicus inhibit the growth of Plasmodium berghei through inhibition of ubiquitin – proteasome system. Trop Biomed. 2013;30(2):291–300.
  • Setyaningrum E, Arifiyanto A, Putri MH, Aeny T, Nukmal N. In vitro test for inhibition of Plasmodium falciparum 3D7 parasites using Streptomyces hygroscopicus subsp. hygroscopicus strain i18, isolated from a pineapple farm in lampung. J Pure Appl Microbiol. 2021;15(2):891–896. doi:10.22207/JPAM.15.2.45
  • Dadzie I, Avorgbedo SA, Appiah-opong R, Cudjoe O. Cytotoxic and antioxidant effects of antimalarial herbal mixtures. Int J Microbiol. 2020;2020:8–10. doi:10.1155/2020/8645691
  • Lima SMA, Melo JGS, Militão GCG, et al. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Appl Microbiol Biotechnol. 2017;101(2):711–723. doi:10.1007/s00253-016-7886-9
  • Kifle ZD, Adinew GM, Mengistie MG, et al. Evaluation of antimalarial activity of methanolic root extract of Myrica salicifolia A Rich (Myricaceae) against Plasmodium berghei – infected mice. J Evid Based Integr Med. 2020;25:1–12.
  • Nureye D, Sano M, Fekadu M, Duguma T, Tekalign E. Antiplasmodial activity of the crude extract and solvent fractions of stem barks of Gardenia ternifolia in Plasmodium berghei -infected mice. Evid Based Complement Alternat Med. 2021;2021:1–16. doi:10.1155/2021/9625169
  • Maji AK. Drug susceptibility testing methods of antimalarial agents. Trop Parasitol. 2018;8(2):70. doi:10.4103/2229-5070.248695
  • Sandy S, Harisma I, Sasto S. Inhibition of secondary metabolite extract of Streptomyces sp. on Plasmodium falciparum in vitro: a Study of soil sediment of papua’s hamadi mangrove forest. Indones J Med Health J. 2020;11:34–43.
  • Ogbeide OK, Dickson VO, Jebba RD, et al. Antiplasmodial and acute toxicity studies of fractions and cassane-type diterpenoids from the stem bark of Caesalpinia pulcherrima (L.) Sw. Trop J Nat Prod Res. 2018;2(4):179–184. doi:10.26538/tjnpr/v2i4.5
  • Lekana-douki JB, Lydie S, Liabagui O, et al. In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa. BMC Res Notes. 2011;4(506):1–5. doi:10.1186/1756-0500-4-506
  • Arifiyanto A, Setyaningrum E, Nukmal N, Aeny TNUR. Short communication: in vitro antimicrobial and antimalarial screening of a crude extract of Streptomyces sp. AB8 isolated from Lapindo Mud Volcano Area, Sidoarjo, Indonesia. Biodiversitas. 2021;22(7):2817–2823. doi:10.13057/biodiv/d220731
  • Parasuraman S. Toxicological screening. J Pharmacol Pharmacother. 2011;2(2):74. doi:10.4103/0976-500X.81895
  • Lange SS, Takata KI, Wood RD. DNA polymerases and cancer. Nat Rev Cancer. 2011;11(2):96. doi:10.1038/nrc2998
  • Wang H, Qian J, Zhang Y, Xu W, Xiao J, Suo A. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel. Cancer Cell Int. 2017;17(1). doi:10.1186/s12935-017-0424-8
  • Ghasemi M, Turnbull T, Sebastian S, Kempson I. The mtt assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23):12827. doi:10.3390/ijms222312827
  • Clarkson C, Maharaj VJ, Crouch NR, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92(2–3):177–191. doi:10.1016/j.jep.2004.02.011
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. From DNA to RNA. In: Molecular Biology of the Cell. Garland Science; 2002.
  • Tanjung M, Saputri RD, Fitriati FF, Tjahjandarie TS. Antimalarial and antioxidant activities of isoprenylated coumarins from the stem bark of Mesua borneensis L. J Biol Act Prod Nat. 2016;6(2):95–100.
  • Kaushik CP, Chahal M. Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. Monatsh Chem. 2021;152(8):1001–1012. doi:10.1007/s00706-021-02821-8
  • Yadav N, Agarwal D, Kumar S, Dixit AK, Gupta RD, Awasthi SK. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur J Med Chem. 2018;145:735–745. doi:10.1016/j.ejmech.2018.01.017
  • Moon HI, Lee JH, Lee YC, Kim KS. Antiplasmodial and cytotoxic activity of coumarin derivatives from dried roots of Angelica gigas Nakai in vitro. Immunopharmacol Immunotoxicol. 2011;33(4):663–666. doi:10.3109/08923973.2011.559248
  • Susidarti RA. In vitro antiplasmodial activity of coumarin 8-hydroxyisocapnolactone-2’,3’-diol isolated from micromelum minutum (G. Forst.) Wight & Arn. Indones J Pharm. 2014;25(1):44. doi:10.14499/indonesianjpharm25iss1pp44
  • Yang YZ, Ranz A, Pan HZ, Zhang ZN, Lin XB, Meshnick SR. Daphnetin: a novel antimalarial agent with in vitro and in vivo activity. Am J Trop Med Hyg. 1992;46(1):15–20. doi:10.4269/ajtmh.1992.46.15