267
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Parameters and Morphological Changes of Erythrocytes and Platelets of COVID-19 Subjects: A Longitudinal Cohort Study

, , , , , , , , , , & show all
Pages 1657-1668 | Received 21 Dec 2022, Accepted 25 Feb 2023, Published online: 23 Mar 2023

References

  • Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The role of Th17 response in COVID-19. Cells Basel. 2021;10(6). doi:10.3390/cells10061550
  • Rahman A, Niloofa R, Jayarajah U, De Mel S, Abeysuriya V, Seneviratne SL. Hematological abnormalities in COVID-19: a narrative review. Am J Trop Med Hyg. 2021;104(4):1188–1201. doi:10.4269/ajtmh.20-1536
  • Slomka A, Martucci G, Raffa GM, et al. Immunological and hematological response in COVID-19. Adv Exp Med Biol. 2021;1352:73–86. doi:10.1007/978-3-030-85109-5_5
  • Slomka A, Kowalewski M, Zekanowska E. Coronavirus disease 2019 (COVID-19): a short review on hematological manifestations. Pathogens. 2020;9(6). doi:10.3390/pathogens9060493
  • Sarkar S, Kannan S, Khanna P, Singh AK. Role of red blood cell distribution width, as a prognostic indicator in COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2022;32(2):e2264. doi:10.1002/rmv.2264
  • Lippi G, Henry BM, Sanchis-Gomar F. Red blood cell distribution is a significant predictor of severe illness in coronavirus disease 2019. Acta Haematol Basel. 2021;144(4):360–364. doi:10.1159/000510914
  • Ycas JW, Horrow JC, Horne BD. Persistent increase in red cell size distribution width after acute diseases: a biomarker of hypoxemia? Clin Chim Acta. 2015;448:107–117. doi:10.1016/j.cca.2015.05.021
  • Braun E, Domany E, Kenig Y, Mazor Y, Makhoul BF, Azzam ZS. Elevated red cell distribution width predicts poor outcome in young patients with community acquired pneumonia. Crit Care. 2011;15(4):R194. doi:10.1186/cc10355
  • Hsieh YP, Chang CC, Kor CT, Yang Y, Wen YK, Chiu PF. Mean corpuscular volume and mortality in patients with CKD. Clin J Am Soc Nephro. 2017;12(2):237–244. doi:10.2215/CJN.00970116
  • Bateman RM, Sharpe MD, Singer M, Ellis CG. The effect of sepsis on the erythrocyte. Int J Mol Sci. 2017;18(9):1932. doi:10.3390/ijms18091932
  • Bergamaschi G, Borrelli DAF, Aronico N, et al. Anemia in patients with COVID-19: pathogenesis and clinical significance. Clin Exp Med. 2021;21(2):239–246. doi:10.1007/s10238-020-00679-4
  • Hornick A, Tashtish N, Osnard M, et al. Anisocytosis is associated with short-term mortality in COVID-19 and may reflect proinflammatory signature in uninfected ambulatory adults. Pathog Immun. 2020;5(1):312–326. doi:10.20411/pai.v5i1.391
  • Grau M, Ibershoff L, Zacher J, et al. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters. J Cell Mol Med. 2022;26(10):3022–3030. doi:10.1111/jcmm.17320
  • de Almeida DC, Franco M, Dos DRP, et al. Acute kidney injury: incidence, risk factors, and outcomes in severe COVID-19 patients. PLoS One. 2021;16(5):e0251048. doi:10.1371/journal.pone.0251048
  • Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–358. doi:10.1152/physrev.00016.2011
  • Middleton EA, Weyrich AS, Zimmerman GA. Platelets in pulmonary immune responses and inflammatory lung diseases. Physiol Rev. 2016;96(4):1211–1259. doi:10.1152/physrev.00038.2015
  • Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123(18):2759–2767. doi:10.1182/blood-2013-11-462432
  • Atik D, Kaya HB. Evaluation of the relationship of mpv, rdw and pvi parameters with disease severity in COVID-19 patients. Acta Clin Croat. 2021;60(1):103–114. doi:10.20471/acc.2021.60.01.15
  • Ozder A. A novel indicator predicts 2019 novel coronavirus infection in subjects with diabetes. Diabetes Res Clin Pr. 2020;166:108294. doi:10.1016/j.diabres.2020.108294
  • Akar T. Can mean platelet volume indicate helicobacter positivity and severity of gastric inflammatIon? An orIgInal study and revIew of the lIterature. Acta Clin Croat. 2019;58(4):576–582. doi:10.20471/acc.2019.58.04.02
  • Zaccardi F, Rocca B, Pitocco D, Tanese L, Rizzi A, Ghirlanda G. Platelet mean volume, distribution width, and count in type 2 diabetes, impaired fasting glucose, and metabolic syndrome: a meta-analysis. Diabetes Metab Res. 2015;31(4):402–410. doi:10.1002/dmrr.2625
  • Khan HA, Alhomida AS, Sobki SH, Moghairi AA, Koronki HE. Blood cell counts and their correlation with creatine kinase and C-reactive protein in patients with acute myocardial infarction. Int J Clin Exp Med. 2012;5(1):50–55.
  • Lichtenberger LM, Szabo S. A closer look at endothelial injury-induced platelet hyperactivity and the use of aspirin in the treatment of COVID infection. Inflammopharmacology. 2022;30(4):1475–1476. doi:10.1007/s10787-022-01015-w
  • Rampotas A, Pavord S. Platelet aggregates, a marker of severe COVID-19 disease. J Clin Pathol. 2021;74(11):750–751. doi:10.1136/jclinpath-2020-206933
  • Ahnach M, Ousti F, Nejjari S, Houssaini MS, Dini N. Peripheral blood smear findings in COVID-19. Turk J Hematol. 2020;37(4):310. doi:10.4274/tjh.galenos.2020.2020.0262
  • Pezeshki A, Vaezi A, Nematollahi P. Blood cell morphology and COVID-19 clinical course, severity, and outcome. J Hematop. 2021;14(3):221–228. doi:10.1007/s12308-021-00459-3
  • Berzuini A, Bianco C, Migliorini AC, Maggioni M, Valenti L, Prati D. Red blood cell morphology in patients with COVID-19-related anaemia. Blood Transfus Italy. 2021;19(1):34–36. doi:10.2450/2020.0242-20
  • Gerard D, Ben BS, Lesesve JF, Perrin J. Are mushroom-shaped erythrocytes an indicator of COVID-19? Brit J Haematol. 2021;192(2):230. doi:10.1111/bjh.17127
  • Khakwani M, Horgan C, Ewing J. COVID-19-associated oxidative damage to red blood cells. Brit J Haematol. 2021;193(3):481. doi:10.1111/bjh.17317
  • NHCPRC (National Health Commission of the PRC). Diagnosis and treatment protocol for COVID-19 (trial version 5); 2020. Available from: http://www.nhc.gov.cn/jkj/s3577/202002/a5d6f7b8c48c451c87dba14889b30147.shtml. Accessed March 3, 2023.
  • Chi H, Zhou K, Shen L, et al. The evaluation of the immune status of COVID-19 recovered subjects with persistent abnormal lung CT after one year: a longitudinal cohort study. Int Immunopharmacol. 2022;110:109019. doi:10.1016/j.intimp.2022.109019
  • Barbara HO. A Color Atlas and Instruction Manual of Peripheral Blood Cell Morphology. Lippincott Williams & Wikins; 1984.
  • Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Handb Exp Pharmacol. 2012;2012(210):3–22. doi:10.1007/978-3-642-29423-5_1
  • Lu G, Wang J. Dynamic changes in routine blood parameters of a severe COVID-19 case. Clin Chim Acta. 2020;508:98–102. doi:10.1016/j.cca.2020.04.034
  • Petelina TI, Musikhina NA, Avdeeva KS, et al. Estimation of erythrocyte parameters of general blood analysis in patients with SARS-CoV-2 -associated pneumonia. Klin Lab Diagn. 2022;67(1):24–30. doi:10.51620/0869-2084-2022-67-1-24-30
  • Rostoff P, Siniarski A, Haberka M, Konduracka E, Nessler J, Gajos G. Relationship among the leptin-to-adiponectin ratio, systemic inflammation, and anisocytosis in well-controlled type 2 diabetic patients with atherosclerotic cardiovascular disease. Kardiol Pol. 2020;78(5):420–428. doi:10.33963/KP.15257
  • Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Cl Lab Sci. 2015;52(2):86–105. doi:10.3109/10408363.2014.992064
  • Fancellu A, Zinellu A, Mangoni AA, et al. Red blood cell distribution width (RDW) correlates to the anatomical location of colorectal cancer. implications for clinical use. J Gastrointest Canc. 2022;53(2):259–264. doi:10.1007/s12029-021-00582-5
  • Rajab AM, Rahman S, Rajab TM, Haider KH. Morphology and chromic status of red blood cells are significantly influenced by gestational diabetes. J Hematol. 2018;7(4):140–148. doi:10.14740/jh449w
  • Damjanovska S, Davitkov P, Gopal S, et al. High red cell distribution width and low absolute lymphocyte count associate with subsequent mortality in HCV infection. Pathog Immun. 2021;6(2):90–104. doi:10.20411/pai.v6i2.467
  • Kogika MM, Lustoza MD, Hagiwara MK, Caragelasco DS, Martorelli CR, Mori CS. Evaluation of oxidative stress in the anemia of dogs with chronic kidney disease. Vet Clin Path. 2015;44(1):70–78. doi:10.1111/vcp.12225
  • Xi H, Li C, Ren F, Zhang H, Zhang L. Telomere, aging and age-related diseases. Aging Clin Exp Res. 2013;25(2):139–146. doi:10.1007/s40520-013-0021-1
  • Aviv A. Telomeres and COVID-19. FASEB J. 2020;34(6):7247–7252. doi:10.1096/fj.202001025
  • Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochem Mosc. 2020;85(12):1543–1553. doi:10.1134/S0006297920120068
  • Kiefer CR, Snyder LM. Oxidation and erythrocyte senescence. Curr Opin Hematol. 2000;7(2):113–116. doi:10.1097/00062752-200003000-00007
  • Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interf Cytok Res. 1998;18(8):555–559. doi:10.1089/jir.1998.18.555
  • Taneri PE, Gomez-Ochoa SA, Llanaj E, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763–773. doi:10.1007/s10654-020-00678-5
  • Begemann M, Gross O, Wincewicz D, et al. Addressing the ‘hypoxia paradox’ in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues. Mol Med. 2021;27(1):120. doi:10.1186/s10020-021-00381-5
  • Han X, Ye Q. Kidney involvement in COVID-19 and its treatments. J Med Virol. 2021;93(3):1387–1395. doi:10.1002/jmv.26653
  • Kario K, Matsuo T, Nakao K, Yamaguchi N. The correlation between red cell distribution width and serum erythropoietin titres. Clin Lab Haematol. 1991;13(2):222–223. doi:10.1111/j.1365-2257.1991.tb00274.x
  • Tekce H, Kin TB, Aktas G, Tanrisev M, Sit M. The evaluation of red cell distribution width in chronic hemodialysis patients. Int J Nephrol. 2014;2014:754370. doi:10.1155/2014/754370
  • Afonso L, Zalawadiya SK, Veeranna V, Panaich SS, Niraj A, Jacob S. Relationship between red cell distribution width and microalbuminuria: a population-based study of multiethnic representative US adults. Nephron. 2011;119(4):c277–82. doi:10.1159/000328918
  • Zaid Y, Puhm F, Allaeys I, et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ Res. 2020;127(11):1404–1418. doi:10.1161/CIRCRESAHA.120.317703
  • Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120. doi:10.1186/s13045-020-00954-7
  • Gao Y, Li Y, Yu X, et al. The impact of various platelet indices as prognostic markers of septic shock. PLoS One. 2014;9(8):e103761. doi:10.1371/journal.pone.0103761
  • Koupenova M, Corkrey HA, Vitseva O, et al. SARS-CoV-2 initiates programmed cell death in platelets. Circ Res. 2021;129(6):631–646. doi:10.1161/CIRCRESAHA.121.319117
  • Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Stormer J, Hansen JB. Mean platelet volume is a risk factor for venous thromboembolism: the Tromso study, Tromso, Norway. J Thromb Haemost. 2010;8(1):157–162. doi:10.1111/j.1538-7836.2009.03498.x
  • Chu SG, Becker RC, Berger PB, et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost. 2010;8(1):148–156. doi:10.1111/j.1538-7836.2009.03584.x
  • Taha M, Sano D, Hanoudi S, et al. Platelets and renal failure in the SARS-CoV-2 syndrome. Platelets. 2021;32(1):130–137. doi:10.1080/09537104.2020.1817361
  • Lippi G, Sanchis-Gomar F, Favaloro EJ, Lavie CJ, Henry BM. Coronavirus disease 2019-associated coagulopathy. Mayo Clin Proc. 2021;96(1):203–217. doi:10.1016/j.mayocp.2020.10.031
  • Puhm F, Allaeys I, Lacasse E, et al. Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv. 2022;6(12):3593–3605. doi:10.1182/bloodadvances.2022007444
  • Shen S, Zhang J, Fang Y, et al. SARS-CoV-2 interacts with platelets and megakaryocytes via ACE2-independent mechanism. J Hematol Oncol. 2021;14(1):72. doi:10.1186/s13045-021-01082-6
  • Benati M, Salvagno GL, Nitto S, et al. thrombin generation in patients with coronavirus disease 2019. Semin Thromb Hemost. 2021;47(4):447–450. doi:10.1055/s-0041-1722844
  • Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. Eclinicalmedicine. 2020;29:100639. doi:10.1016/j.eclinm.2020.100639
  • Makowski M, Smorag I, Makowska J, et al. Platelet reactivity and mean platelet volume as risk markers of thrombogenesis in atrial fibrillation. Int J Cardiol. 2017;235:1–5. doi:10.1016/j.ijcard.2017.03.023
  • Michalak A, Cichoz-Lach H, Guz M, Kozicka J, Cybulski M, Jeleniewicz W. Plateletcrit and mean platelet volume in the evaluation of alcoholic liver cirrhosis and nonalcoholic fatty liver disease patients. Biomed Res Int. 2021;2021:8867985. doi:10.1155/2021/8867985
  • Guo F, Zhu X, Qin X. Platelet distribution width in hepatocellular carcinoma. Med Sci Monitor. 2018;24:2518–2523.
  • Guclu E, Kocayigit H, Okan HD, et al. Effect of COVID-19 on platelet count and its indices. Rev Assoc Med Bras. 2020;66(8):1122–1127. doi:10.1590/1806-9282.66.8.1122
  • Ozcelik N, Ozyurt S, Yilmaz KB, Gumus A, Sahin U. The value of the platelet count and platelet indices in differentiation of COVID-19 and influenza pneumonia. J Med Virol. 2021;93(4):2221–2226. doi:10.1002/jmv.26645