966
Views
12
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

oprL Gene Sequencing, Resistance Patterns, Virulence Genes, Quorum Sensing and Antibiotic Resistance Genes of XDR Pseudomonas aeruginosa Isolated from Broiler Chickens

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 853-867 | Received 14 Dec 2022, Accepted 08 Feb 2023, Published online: 13 Feb 2023

References

  • Handley JA, Park SH, Kim SA, Ricke SC. Microbiome profiles of commercial broilers through evisceration and immersion chilling during poultry slaughter and the identification of potential indicator microorganisms. Front Microbiol. 2018;9:345. doi:10.3389/fmicb.2018.00345
  • Abdel-Tawab AA, Nasef SA, Ibrahim OA. Bacteriological and molecular studies on bacteria causing omphalitis in chicks with regard to disinfectant resistance. Glob Veterinaria. 2016;17(6):539–545.
  • Shukla S, Mishra P. Pseudomonas aeruginosa infection in broiler chicks in Jabalpur. Int J Ext Res. 2015;6:37–39.
  • Shahat HS, Mohamed H, Al-Azeem A, Mohammed W, Nasef SA. Molecular detection of some virulence genes in Pseudomonas aeruginosa isolated from chicken embryos and broilers with regard to disinfectant resistance. Int J Vet Sci. 2019;2(2):52–70. doi:10.21608/svu.2019.12365.1011
  • Saad ZA, Nasef SA, Elhariri M, Elhelw R, Ezzeldeen N. Resistance patterns associated with bacterial pathogens causing omphalitis in baby chicks. Biosci Res. 2017;14(4):845–851.
  • Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117–2131. doi:10.1007/s40265-021-01635-6
  • Eraky R, Abd El-Ghany W, Soliman K. Studies on Pseudomonas aeruginosa infection in hatcheries and chicken. J Hellenic Vet Med Soc. 2020;71(1):1953–1962. doi:10.12681/jhvms.22937
  • Mesquita CS, Soares-Castro P, Santos PM, Mendez-Vilas A. Pseudomonas aeruginosa: phenotypic flexibility and antimicrobial resistance. Sci Technol Educ. 2013;1:650–665.
  • Fazeli N, Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J. 2014;16(10). doi:10.5812/ircmj.15722
  • Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021;22(6):3128. doi:10.3390/ijms22063128
  • Nikbin V, Aslani MM, Sharafi Z, Hashemipour M, Shahcheraghi F, Ebrahimipour G. Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran J Microbiol. 2012;4(3):118.
  • Gong Q, Ruan M, Niu M, Qin C, Hou Y, Guo J. Immune efficacy of DNA vaccines based on oprL and oprF genes of Pseudomonas aeruginosa in chickens. Poult Sci. 2018;97(12):4219–4227. doi:10.3382/ps/pey307
  • Rocha AJ, Barsottini M, Rocha RR, Laurindo MV, Moraes FL, Rocha SL. Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Braz Arch Biol Technol. 2019;62. doi:10.1590/1678-4324-2019180503
  • Algammal AM, Hashem HR, Al-Otaibi AS, et al. Emerging MDR-Mycobacterium avium subsp. avium in house-reared domestic birds as the first report in Egypt. BMC Microbiol. 2021;21(1):1–11. doi:10.1186/s12866-021-02287-y
  • Elbehiry A, Marzouk E, Aldubaib M, et al. Pseudomonas species prevalence, protein analysis, and antibiotic resistance: an evolving public health challenge. AMB Express. 2022;12(1):1–14. doi:10.1186/s13568-022-01390-1
  • Algammal AM, Abo Hashem ME, Alfifi KJ, et al. Sequence analysis, antibiogram profile, virulence and antibiotic resistance genes of XDR and MDR Gallibacterium anatis isolated from layer chickens in Egypt. Infect Drug Resist. 2022:4321–4334. doi:10.2147/IDR.S377797
  • Algammal AM, Ibrahim RA, Alfifi KJ, et al. A first report of molecular typing, virulence traits, and phenotypic and genotypic resistance patterns of newly emerging XDR and MDR Aeromonas veronii in Mugil seheli. Pathogens. 2022;11(11):1262. doi:10.3390/pathogens11111262
  • Langendonk RF, Neill DR, Fothergill JL. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: implications for current resistance-breaking therapies. Front Cell Infect Microbiol. 2021;11:665759. doi:10.3389/fcimb.2021.665759
  • Peymani A, Naserpour-Farivar T, Zare E, Azarhoosh K. Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. J Prev Med Hyg. 2017;58(2):E155.
  • Heir E, Moen B, Åsli AW, Sunde M, Langsrud S. Antibiotic resistance and phylogeny of Pseudomonas spp. isolated over three decades from chicken meat in the Norwegian food chain. Microorganisms. 2021;9(2):207. doi:10.3390/microorganisms9020207
  • Meng L, Liu H, Lan T, et al. Antibiotic resistance patterns of Pseudomonas spp. isolated from raw milk revealed by whole genome sequencing. Front Microbiol. 2020;11:1005. doi:10.3389/fmicb.2020.01005
  • Mac Faddin JF. Media for Isolation-Cultivation-Identification-Maintenance of Medical Bacteria. Williams & Wilkins; 1985.
  • Xu J, Moore JE, Murphy PG, Millar BC, Elborn JS. Early detection of Pseudomonas aeruginosa–comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann Clin Microbiol Antimicrob. 2004;3(1):1–5. doi:10.1186/1476-0711-3-21
  • Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci. 2004;2004:11030–11035.
  • Clinical Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 4th ed. In: CLSI Supplement VET08. Wayne: Clinical Laboratory Standards Institute; 2018.
  • Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165–170. doi:10.1128/aem.46.1.165-170.1983
  • Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet. 2014;5(3):125.
  • Winstanley C, Kaye SB, Neal TJ, Chilton HJ, Miksch S, Hart CA. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J Med Microbiol. 2005;54(6):519–526. doi:10.1099/jmm.0.46005-0
  • Finnan S, Morrissey JP, O’Gara F, Boyd EF. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol. 2004;42(12):5783–5792. doi:10.1128/JCM.42.12.5783-5792.2004
  • Colom K, Pérez J, Alonso R, Fernández-Aranguiz A, Lariño E, Cisterna R. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA–1 genes in Enterobacteriaceae. FEMS Microbiol Lett. 2003;223(2):147–151. doi:10.1016/S0378-1097(03)00306-9
  • Archambault M, Petrov P, Hendriksen RS, et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar Corvallis from Thailand, Bulgaria, and Denmark. Microb Drug Resist. 2006;12(3):192–198. doi:10.1089/mdr.2006.12.192
  • Randall L, Cooles S, Osborn M, Piddock L, Woodward MJ. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother. 2004;53(2):208–216. doi:10.1093/jac/dkh070
  • Ibekwe AM, Murinda SE, Graves AK. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One. 2011;6(6):e20819. doi:10.1371/journal.pone.0020819
  • Abdelmoez N, Shawky M, Abdelhady H, Lebdah M, Salama S. Isolation and identification of some possible causative agents of swollen head syndrome (SHS) in broiler chickens in Egypt. Slov Vet Res. 2019;56:542.
  • Abd El-Tawab A, El-Hofy F, Khater D, Al-Adl M. Virulence, resistance genes detection and sequencing of gyrA gene of Pseudomonas aeruginosa isolated from chickens and human in Egypt. Nat Sci. 2018;16(2):32–39.
  • Abd El-Ghany WA. Pseudomonas aeruginosa infection of avian origin: zoonosis and one health implications. Vet World. 2021;14(8):2155. doi:10.14202/vetworld.2021.2155-2159
  • Algammal AM, Mabrok M, Sivaramasamy E, et al. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep. 2020;10(1):1–12. doi:10.1038/s41598-020-72264-4
  • Kumar A, Chua K-L, Schweizer HP. Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother. 2006;50(10):3460–3463. doi:10.1128/AAC.00440-06
  • Kousar S, Rehman N, Javed A, et al. Intensive poultry farming practices influence antibiotic resistance profiles in Pseudomonas aeruginosa inhabiting nearby soils. Infect Drug Resist. 2021;14:4511. doi:10.2147/IDR.S324055
  • Mohamed HM, Alnasser SM, Abd-Elhafeez HH, Alotaibi M, Batiha GE-S, Younis W. Detection of β-lactamase resistance and biofilm genes in pseudomonas species isolated from chickens. Microorganisms. 2022;10(10):1975. doi:10.3390/microorganisms10101975
  • Sans-Serramitjana E, Fusté E, Martínez-Garriga B, et al. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. J Cystic Fibrosis. 2016;15(5):611–618. doi:10.1016/j.jcf.2015.12.005
  • Rafique A, Andleeb S, Ghous T, Shahzad N, Shafique I. Antibacterial activity of traditional herbs and standard antibiotics against poultry associated Pseudomonas aeruginosa. J Pharm Sci Innov. 2012;1(5):12–16.
  • Makharita RR, El-Kholy I, Hetta HF, et al. Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections. Infect Drug Resist. 2020;13:3991. doi:10.2147/IDR.S276975
  • Langaee TY, Gagnon L, Huletsky A. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC β-lactamase expression. Antimicrob Agents Chemother. 2000;44(3):583–589. doi:10.1128/AAC.44.3.583-589.2000
  • Al-Dahmoshi HO, Al-Khafaji NS, Jeyad AA, Shareef HK, Al-Jebori RF. Molecular detection of some virulence traits among Pseudomonas aeruginosa isolates, Hilla-Iraq. Biomed Pharmacol J. 2018;11(2):835–842. doi:10.13005/bpj/1439
  • Bakheet AA, Torra DE. Detection of Pseudomonas aeruginosa in dead chicken embryo with reference to pathological changes and virulence genes. Alexandria J Vet Sci. 2020;65(1):81. doi:10.5455/ajvs.101343
  • Qian Z, Hui P, Han L, et al. Serotypes and virulence genes of Pseudomonas aeruginosa isolated from mink and its pathogenicity in mink. Microb Pathog. 2020;139:103904. doi:10.1016/j.micpath.2019.103904
  • Douraghi M, Ghasemi F, Dallal MS, Rahbar M, Rahimiforoushani A. Molecular identification of Pseudomonas aeruginosa recovered from cystic fibrosis patients. J Prev Med Hyg. 2014;55(2):50.
  • Vanderwoude J, Fleming D, Azimi S, Trivedi U, Rumbaugh KP, Diggle SP. The evolution of virulence in Pseudomonas aeruginosa during chronic wound infection. Proc Royal Soc B. 2020;287(1937):20202272. doi:10.1098/rspb.2020.2272
  • Iiyama K, Takahashi E, Lee JM, et al. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017;364(7). doi:10.1093/femsle/fnx051
  • Butterworth MB, Zhang L, Heidrich EM, Myerburg MM, Thibodeau PH. Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem. 2012;287:32556–32565. doi:10.1074/jbc.M112.369520
  • Hartmann A, Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol. 2012;38(6):704–713. doi:10.1007/s10886-012-0141-7
  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci. 2013;110(44):17981–17986. doi:10.1073/pnas.1316981110
  • Khorvash F, Yazdani M, Shabani S, Soudi A. Pseudomonas aeruginosa-producing metallo-β-lactamases (VIM, IMP, SME, and AIM) in the clinical isolates of intensive care units, a university hospital in Isfahan, Iran. Adv Biomed Res. 2017;6:25.
  • Sanz-García F, Hernando-Amado S, Martínez JL. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob Agents Chemother. 2018;62(10):e01379–01318. doi:10.1128/AAC.01379-18
  • Krishnan G, Sethumadhavan A, Muthusamy S, Mani M. Antibiotic resistant clinical isolates of Pseudomonas aeruginosa harbor LasA gene. Internet J Microbiol. 2019;16:125.
  • Cho J-K, Kim J-H, Kim J-M, Park C-K, Kim K-S. Antimicrobial resistance and distribution of resistance gene in Enterobacteriaceae and Pseudomonas aeruginosa isolated from dogs and cats. Korean J Vet Service. 2013;36(3):171–180. doi:10.7853/kjvs.2013.36.3.171
  • Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa–mechanisms, epidemiology and evolution. Drug Resist Updates. 2019;44:100640. doi:10.1016/j.drup.2019.07.002
  • Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–192. doi:10.1016/j.biotechadv.2018.11.013
  • Gajdács M, Baráth Z, Kárpáti K, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 2021;10:1134. doi:10.3390/antibiotics10091134