1,021
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance

, ORCID Icon, & ORCID Icon
Pages 1455-1470 | Received 26 Dec 2022, Accepted 06 Mar 2023, Published online: 14 Mar 2023

References

  • Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. doi:10.1126/scitranslmed.3004404
  • Fisher MC, Gurr SJ, Cuomo CA, et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio. 2020;11(3):e00449–20. doi:10.1128/mBio.00449-20
  • Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4(1):18026. doi:10.1038/nrdp.2018.26
  • Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41–44. doi:10.1111/j.1348-0421.2008.00083.x
  • Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, et al. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol. 2012;50(11):3641–3651. doi:10.1128/jcm.02248-12
  • Lima SL, Francisco EC, de Almeida Júnior JN, et al. Increasing prevalence of multidrug-resistant Candida haemulonii species complex among all yeast cultures collected by a reference laboratory over the past 11 Years. J Fungi. 2020;6(3). doi:10.3390/jof6030110
  • Khan ZU, Al-Sweih NA, Ahmad S, et al. Outbreak of fungemia among neonates caused by Candida haemulonii resistant to amphotericin B, itraconazole, and fluconazole. J Clin Microbiol. 2007;45(6):2025–2027. doi:10.1128/jcm.00222-07
  • Ramos LS, Figueiredo-Carvalho MH, Barbedo LS, et al. Candida haemulonii complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil. J Antimicrob Chemother. 2015;70(1):111–115. doi:10.1093/jac/dku321
  • Deng Y, Li S, Bing J, Liao W, Tao L. Phenotypic switching and filamentation in Candida haemulonii, an emerging opportunistic pathogen of humans. Microbiol Spectr. 2021;9(3):e0077921. doi:10.1128/Spectrum.00779-21
  • Hou X, Xiao M, Chen SC-A, et al. Identification and antifungal susceptibility profiles of Candida haemulonii species complex clinical isolates from a multicenter study in China. J Clin Microbiol. 2016;54(11):2676–2680. doi:10.1128/jcm.01492-16
  • Ramos LS, Figueiredo-Carvalho MHG, Silva LN, et al. The threat called Candida haemulonii species complex in Rio de Janeiro State, Brazil: focus on antifungal resistance and virulence attributes. J Fungi. 2022;8(6):574. doi:10.3390/jof8060574
  • Frías-de-león MG, Martínez-Herrera E, Acosta-Altamirano G, Arenas R, Rodríguez-Cerdeira C. Superficial candidosis by Candida duobushaemulonii: an emerging microorganism. Infect Genet Evol. 2019;75:103960. doi:10.1016/j.meegid.2019.103960
  • Jeffery-Smith A, Taori SK, Schelenz S, et al. Candida auris: a review of the literature. Clin Microbiol Rev. 2018;31(1):e00029–17. doi:10.1128/cmr.00029-17
  • Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020;16(10):e1008921. doi:10.1371/journal.ppat.1008921
  • Oh BJ, Shin JH, Kim MN, et al. Biofilm formation and genotyping of Candida haemulonii, Candida pseudohaemulonii, and a proposed new species (Candida auris) isolates from Korea. Med Mycol. 2011;49(1):98–102. doi:10.3109/13693786.2010.493563
  • Sherry L, Ramage G, Kean R, et al. Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis. 2017;23(2):328–331. doi:10.3201/eid2302.161320
  • Chowdhary A, Sharma C, Duggal S, et al. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis. 2013;19(10):1670–1673. doi:10.3201/eid1910.130393
  • Kathuria S, Singh PK, Sharma C, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and DNA Sequencing and Its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol. 2015;53(6):1823–1830. doi:10.1128/jcm.00367-15
  • Healey KR, Kordalewska M, Jiménez Ortigosa C, et al. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother. 2018;62(10). doi:10.1128/aac.01427-18
  • Sugita T, Takashima M, Poonwan N, Mekha N. Candida pseudohaemulonii Sp. Nov., an amphotericin B-and azole-resistant yeast species, isolated from the blood of a patient from Thailand. Microbiol Immunol. 2006;50(6):469–473. doi:10.1111/j.1348-0421.2006.tb03816.x
  • Navarro-Muñoz JC, de Jong AW, Gerrits van den Ende B, et al. The high-quality complete genome sequence of the opportunistic fungal pathogen Candida vulturna CBS 14366(T). Mycopathologia. 2019;184(6):731–734. doi:10.1007/s11046-019-00404-0
  • Gade L, Muñoz JF, Sheth M, et al. Understanding the emergence of multidrug-resistant Candida: using whole-genome sequencing to describe the population structure of Candida haemulonii species complex. Original Research. Front Genet. 2020;11:554. doi:10.3389/fgene.2020.00554
  • Muthusamy A, Rao M, Chakrabarti A, Velayuthan RD. Case report: catheter related blood stream infection caused by Candida vulturna. Med Mycol Case Rep. 2022;36:27–30. doi:10.1016/j.mmcr.2022.04.001
  • Lee WG, Shin JH, Uh Y, et al. First three reported cases of nosocomial fungemia caused by Candida auris. J Clin Microbiol. 2011;49(9):3139–3142. doi:10.1128/jcm.00319-11
  • Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–140. doi:10.1093/cid/ciw691
  • Lamoth F, Kontoyiannis DP. The Candida auris alert: facts and perspectives. J Infect Dis. 2018;217(4):516–520. doi:10.1093/infdis/jix597
  • Chowdhary A, Sharma C, Meis JF. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017;13(5):e1006290. doi:10.1371/journal.ppat.1006290
  • Khan Z, Ahmad S. Candida auris: an emerging multidrug-resistant pathogen of global significance. Curr Med Res Pract. 2017;7(6):240–248. doi:10.1016/j.cmrp.2017.11.004
  • Saris K, Meis JF, Voss A. Candida auris. Curr Opin Infect Dis. 2018;31(4):334–340. doi:10.1097/qco.0000000000000469
  • Zhu Y, O’Brien B, Leach L, et al. Laboratory analysis of an outbreak of Candida auris in New York from 2016 to 2018: impact and lessons learned. J Clin Microbiol. 2020;58(4):e01503–19. doi:10.1128/jcm.01503-19
  • Chowdhary A, Anil Kumar V, Sharma C, et al. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis. 2014;33(6):919–926. doi:10.1007/s10096-013-2027-1
  • Ahmad S, Khan Z, Al-Sweih N, Alfouzan W, Joseph L. Candida auris in various hospitals across Kuwait and their susceptibility and molecular basis of resistance to antifungal drugs. Mycoses. 2020;63(1):104–112. doi:10.1111/myc.13022
  • Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016;5:35. doi:10.1186/s13756-016-0132-5
  • Govender NP, Magobo RE, Mpembe R, et al. Candida auris in South Africa, 2012–2016. Emerg Infect Dis. 2018;24(11):2036–2040. doi:10.3201/eid2411.180368
  • Rhodes J, Abdolrasouli A, Farrer RA, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect. 2018;7(1):43. doi:10.1038/s41426-018-0045-x
  • Ruiz-Gaitán A, Moret AM, Tasias-Pitarch M, et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses. 2018;61(7):498–505. doi:10.1111/myc.12781
  • Adam RD, Revathi G, Okinda N, et al. Analysis of Candida auris fungemia at a single facility in Kenya. Int J Infect Dis. 2019;85:182–187. doi:10.1016/j.ijid.2019.06.001
  • Armstrong PA, Rivera SM, Escandon P, et al. Hospital-associated multicenter outbreak of emerging fungus Candida auris, Colombia, 2016. Emerg Infect Dis. 2019;25(7):1339–1346. doi:10.3201/eid2507.180491
  • Barantsevich NE, Vetokhina AV, Ayushinova NI, Orlova OE, Barantsevich EP. Candida auris bloodstream infections in Russia. Antibiotics. 2020;9(9):557. doi:10.3390/antibiotics9090557
  • Alfouzan W, Ahmad S, Dhar R, et al. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J Fungi. 2020;6(4):307. doi:10.3390/jof6040307
  • Farooqi JQ, Soomro AS, Baig MA, et al. Outbreak investigation of Candida auris at a tertiary care hospital in Karachi, Pakistan. J Infect Prev. 2020;21(5):189–195. doi:10.1177/1757177420935639
  • Alshamrani MM, El-Saed A, Mohammed A, et al. Management of Candida auris outbreak in a tertiary-care setting in Saudi Arabia. Infect Control Hosp Epidemiol. 2021;42(2):149–155. doi:10.1017/ice.2020.414
  • Eckbo EJ, Wong T, Bharat A, et al. First reported outbreak of the emerging pathogen Candida auris in Canada. Am J Infect Control. 2021;49(6):804–807. doi:10.1016/j.ajic.2021.01.013
  • Villanueva-Lozano H, Treviño-Rangel RJ, González GM, et al. Outbreak of Candida auris infection in a COVID-19 hospital in Mexico. Clin Microbiol Infect. 2021;27(5):813–816. doi:10.1016/j.cmi.2020.12.030
  • Arensman K, Miller JL, Chiang A, et al. Clinical outcomes of patients treated for Candida auris infections in a multisite health system, Illinois, USA. Emerg Infect Dis. 2020;26(5):876–880. doi:10.3201/eid2605.191588
  • Al Maani A, Paul H, Al-Rashdi A, et al. Ongoing challenges with healthcare-associated Candida auris outbreaks in Oman. J Fungi. 2019;5(4):101. doi:10.3390/jof5040101
  • Mohsin J, Weerakoon S, Ahmed S, et al. A cluster of Candida auris blood stream infections in a tertiary care hospital in Oman from 2016 to 2019. Antibiotics. 2020;9(10):638. doi:10.3390/antibiotics9100638
  • Mulet Bayona JV, Tormo Palop N, Salvador García C, et al. Characteristics and management of candidaemia episodes in an established Candida auris outbreak. Antibiotics. 2020;9(9):558. doi:10.3390/antibiotics9090558
  • Welsh RM, Bentz ML, Shams A, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol. 2017;55(10):2996–3005. doi:10.1128/jcm.00921-17
  • Kumar J, Eilertson B, Cadnum JL, et al. Environmental contamination with Candida species in multiple hospitals including a tertiary care hospital with a Candida auris outbreak. Pathog Immun. 2019;4(2):260–270. doi:10.20411/pai.v4i2.291
  • Chen J, Tian S, Han X, et al. Is the superbug fungus really so scary? A systematic review and meta-analysis of global epidemiology and mortality of Candida auris. BMC Infect Dis. 2020;20(1):827. doi:10.1186/s12879-020-05543-0
  • Chaabane F, Graf A, Jequier L, Coste AT. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol. 2019;10:2788. doi:10.3389/fmicb.2019.02788
  • Kim S, Ko KS, Moon SY, Lee MS, Lee MY, Son JS. Catheter-related candidemia caused by Candida haemulonii in a patient in long-term hospital care. J Korean Med Sci. 2011;26(2):297–300. doi:10.3346/jkms.2011.26.2.297
  • Almeida JN, Motta AL, Rossi F, et al. First report of a clinical isolate of Candida haemulonii in Brazil. Clinics. 2012;67(10):1229–1231. doi:10.6061/clinics/2012(10)18
  • Kim MN, Shin JH, Sung H, et al. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin Infect Dis. 2009;48(6):e57–e61. doi:10.1086/597108
  • Dewaele K, Lagrou K, Frans J, Hayette MP, Vernelen K. Hospital laboratory survey for identification of Candida auris in Belgium. J Fungi. 2019;5(3):84. doi:10.3390/jof5030084
  • Rodero L, Cuenca-Estrella M, Córdoba S, et al. Transient fungemia caused by an amphotericin B-resistant isolate of Candida haemulonii. J Clin Microbiol. 2002;40(6):2266–2269. doi:10.1128/jcm.40.6.2266-2269.2002
  • Giusiano G, Mangiaterra M, Garcia Saito V, Rojas F, Gómez V, Díaz MC. Fluconazole and itraconazole resistance of yeasts isolated from the bloodstream and catheters of hospitalized pediatric patients. Chemotherapy. 2006;52(5):254–259. doi:10.1159/000094867
  • Reséndiz-Sánchez J, Ortiz-álvarez J, Casimiro-Ramos A, Hernández-Rodríguez C, Villa-Tanaca L. First report of a catheter-related bloodstream infection by Candida haemulonii in a children’s hospital in Mexico City. Int J Infect Dis. 2020;92:123–126. doi:10.1016/j.ijid.2019.12.037
  • de Almeida JN, Assy JG, Levin AS, et al. Candida haemulonii complex species, Brazil, January 2010-March 2015. Emerg Infect Dis. 2016;22(3):561–563. doi:10.3201/eid2203.151610
  • Kumar A, Prakash A, Singh A, et al. Candida haemulonii species complex: an emerging species in India and its genetic diversity assessed with multilocus sequence and amplified fragment-length polymorphism analyses. Emerg Microbes Infect. 2016;5(5):e49. doi:10.1038/emi.2016.49
  • Guarana M, Nucci M. Acute disseminated candidiasis with skin lesions: a systematic review. Clin Microbiol Infect. 2018;24(3):246–250. doi:10.1016/j.cmi.2017.08.016
  • Goswami R, Dadhwal V, Tejaswi S, et al. Species-specific prevalence of vaginal candidiasis among patients with diabetes mellitus and its relation to their glycaemic status. J Infect. 2000;41(2):162–166. doi:10.1053/jinf.2000.0723
  • Ruan SY, Kuo YW, Huang CT, Hsiue HC, Hsueh PR. Infections due to Candida haemulonii: species identification, antifungal susceptibility and outcomes. Int J Antimicrob Agents. 2010;35(1):85–88. doi:10.1016/j.ijantimicag.2009.08.009
  • Oberoi JK, Wattal C, Goel N, Raveendran R, Datta S, Prasad K. Non-albicans Candida species in blood stream infections in a tertiary care hospital at New Delhi, India. Indian J Med Res Dec. 2012;136(6):997–1003.
  • Yuvaraj A, Rohit A, Koshy PJ, Nagarajan P, Nair S, Abraham G. Rare occurrence of fatal Candida haemulonii peritonitis in a diabetic CAPD patient. Ren Fail. 2014;36(9):1466–1467. doi:10.3109/0886022x.2014.944067
  • Kumar D, Banerjee T, Pratap CB, Tilak R. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis. J Infect Dev Ctries. 2015;9(4):435–437. doi:10.3855/jidc.4582
  • Wang X, Bing J, Zheng Q, et al. The first isolate of Candida auris in China: clinical and biological aspects. Emerg Microbes Infect. 2018;7(1):93. doi:10.1038/s41426-018-0095-0
  • Ahmad S, Alfouzan W. Candida auris: epidemiology, diagnosis, pathogenesis, antifungal susceptibility, and infection control measures to combat the spread of infections in healthcare facilities. Microorganisms. 2021;9(4):807. doi:10.3390/microorganisms9040807
  • Jurado-Martín I, Marcos-Arias C, Tamayo E, et al. Candida duobushaemulonii: an old but unreported pathogen. J Fungi. 2020;6(4). doi:10.3390/jof6040374
  • de Jong AW, Dieleman C, Carbia M, Mohd Tap R, Hagen F. Performance of two novel chromogenic media for the identification of multidrug-resistant Candida auris compared with other commercially available. J Clin Microbiol. 2021;59(4):e03220. doi:10.1128/jcm.03220-20
  • Fang SY, Wei KC, Chen WC, et al. Primary deep cutaneous candidiasis caused by Candida duobushaemulonii in a 68-year-old man: the first case report and literature review. Mycoses. 2016;59(12):818–821. doi:10.1111/myc.12540
  • Sipiczki M, Tap RM. Candida vulturna pro tempore sp. nov., a dimorphic yeast species related to the Candida haemulonis species complex isolated from flowers and clinical sample. Int J Syst Evol Microbiol. 2016;66(10):4009–4015. doi:10.1099/ijsem.0.001302
  • Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017;216(suppl_3):S445–S451. doi:10.1093/infdis/jix131
  • Delma FZ, Al-Hatmi AMS, Brüggemann RJM, et al. Molecular mechanisms of 5-fluorocytosine resistance in yeasts and filamentous fungi. J Fungi. 2021;7(11):909. doi:10.3390/jof7110909
  • Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–798. doi:10.1016/j.cmi.2019.03.028
  • Marak MB, Dhanashree B. Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples. Int J Microbiol. 2018;2018:7495218. doi:10.1155/2018/7495218
  • Vallabhaneni S, Kallen A, Tsay S, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus-United States, May 2013-August 2016. Am J Transplant. 2017;17(1):296–299. doi:10.1111/ajt.14121
  • Chowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J Hosp Infect. 2016;94(3):209–212. doi:10.1016/j.jhin.2016.08.004
  • Perea S, López-Ribot JL, Kirkpatrick WR, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45(10):2676–2684. doi:10.1128/aac.45.10.2676-2684.2001
  • Chowdhary A, Prakash A, Sharma C, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–899. doi:10.1093/jac/dkx480
  • Muñoz JF, Gade L, Chow NA, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9(1):5346. doi:10.1038/s41467-018-07779-6
  • Feng W, Yang J, Xi Z, et al. Regulatory role of ERG3 and Efg1 in azoles-resistant strains of Candida albicans isolated from patients diagnosed with vulvovaginal candidiasis. Indian J Microbiol. 2019;59(4):514–524. doi:10.1007/s12088-019-00833-x
  • Suwunnakorn S, Wakabayashi H, Kordalewska M, Perlin DS, Rustchenko E. FKS2 and FKS3 genes of opportunistic human pathogen Candida albicans influence echinocandin susceptibility. Antimicrob Agents Chemother. 2018;62(4):e02299–17. doi:10.1128/aac.02299-17
  • Kordalewska M, Perlin DS. Identification of drug resistant Candida auris. Front Microbiol. 2019;10:1918. doi:10.3389/fmicb.2019.01918
  • Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002;49(6):973–980. doi:10.1093/jac/dkf049
  • Sharma C, Kumar N, Pandey R, Meis JF, Chowdhary A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect. 2016;13:77–82. doi:10.1016/j.nmni.2016.07.003
  • Chatterjee S, Alampalli SV, Nageshan RK, Chettiar ST, Joshi S, Tatu US. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics. 2015;16(1):686. doi:10.1186/s12864-015-1863-z
  • Jallow S, Govender NP. Ibrexafungerp: a first-in-class oral triterpenoid glucan synthase inhibitor. J Fungi. 2021;7(3):163. doi:10.3390/jof7030163
  • Muro MD, Motta Fde A, Burger M, Melo AS, Dalla-Costa LM. Echinocandin resistance in two Candida haemulonii isolates from pediatric patients. J Clin Microbiol. 2012;50(11):3783–3785. doi:10.1128/jcm.01136-12
  • Borman AM, Szekely A, Johnson EM. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere. 2016;1(4). doi:10.1128/mSphere.00189-16
  • Yue H, Bing J, Zheng Q, et al. Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg Microbes Infect. 2018;7(1):1–13. doi:10.1038/s41426-018-0187-x
  • Pharkjaksu S, Boonmee N, Mitrpant C, Ngamskulrungroj P. Immunopathogenesis of emerging Candida auris and Candida haemulonii strains. J Fungi. 2021;7(9):725. doi:10.3390/jof7090725
  • Ramos LS, Oliveira SSC, Silva LN, et al. Surface, adhesiveness and virulence aspects of Candida haemulonii species complex. Med Mycol. 2020;58(7):973–986. doi:10.1093/mmy/myz139
  • Mora-Montes HM, Ponce-Noyola P, Villagomez-Castro JC, Gow NA, Flores-Carreon A, Lopez-Romero E. Protein glycosylation in Candida. Future Microbiol. 2009;4(9):1167–1183. doi:10.2217/fmb.09.88
  • Boatto HF, Cavalcanti SD, Del negro GM, et al. Candida duobushaemulonii: an emerging rare pathogenic yeast isolated from recurrent vulvovaginal candidiasis in Brazil. Mem Inst Oswaldo Cruz. 2016;111(6):407–410. doi:10.1590/0074-02760160166
  • Santos MAS, Gomes AC, Santos MC, Carreto LC, Moura GR. The genetic code of the fungal CTG clade. C R Biol. 2011;334(8–9):607–611. doi:10.1016/j.crvi.2011.05.008
  • Bidaud AL, Chowdhary A, Dannaoui E. Candida auris: an emerging drug resistant yeast – a mini-review. J Mycol Med. 2018;28(3):568–573. doi:10.1016/j.mycmed.2018.06.007
  • Zhang H, Niu Y, Tan J, et al. Global screening of genomic and transcriptomic factors associated with phenotype differences between multidrug-resistant and -susceptible Candida haemulonii strains. mSystems. 2019;4(6). doi:10.1128/mSystems.00459-19
  • Rodrigues LS, Gazara RK, Passarelli-Araujo H, et al. First genome sequences of two multidrug-resistant Candida haemulonii var. vulnera isolates from pediatric patients with candidemia. Front Microbiol. 2020;11:1535. doi:10.3389/fmicb.2020.01535
  • Rossato L, Colombo AL. Candida auris: what have we learned about its mechanisms of pathogenicity? Front Microbiol. 2018;9:3081. doi:10.3389/fmicb.2018.03081
  • Chybowska AD, Childers DS, Farrer RA. Nine things genomics can tell us about Candida auris. Front Genet. 2020;11:351. doi:10.3389/fgene.2020.00351
  • Kean R, Delaney C, Sherry L, et al. Transcriptome assembly and profiling of candida auris reveals novel insights into biofilm-mediated resistance. mSphere. 2018;3(4):e00334–18. doi:10.1128/mSphere.00334-18
  • Piedrahita CT, Cadnum JL, Jencson AL, Shaikh AA, Ghannoum MA, Donskey CJ. Environmental surfaces in healthcare facilities are a potential source for transmission of candida auris and other Candida species. Infect Control Hosp Epidemiol. 2017;38(9):1107–1109. doi:10.1017/ice.2017.127
  • Singh S, Uppuluri P, Mamouei Z, et al. The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog. 2019;15(8):e1007460. doi:10.1371/journal.ppat.1007460
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. doi:10.1038/nrd.2018.168
  • Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida albicans Adhesin Hwp1 in biofilm formation. Eukaryot Cell. 2006;5(10):1604–1610. doi:10.1128/ec.00194-06
  • Nayak AP, Green BJ, Beezhold DH. Fungal hemolysins. Med Mycol. 2013;51(1):1–16. doi:10.3109/13693786.2012.698025
  • Larkin E, Hager C, Chandra J, et al. The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother. 2017;61(5):e02396–16. doi:10.1128/aac.02396-16
  • Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising drug candidates and new strategies for fighting against the emerging superbug Candida auris. Microorganisms. 2021;9(3):634. doi:10.3390/microorganisms9030634
  • Mendoza-Reyes DF, Gómez-Gaviria M, Mora-Montes HM. Candida lusitaniae: biology, pathogenicity, virulence factors, diagnosis, and treatment. Infect Drug Resist. 2022;15:5121–5135. doi:10.2147/idr.S383785
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128. doi:10.4161/viru.22913
  • Gómez-Gaviria M, Mora-Montes HM. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect Drug Resist. 2020;13:1673–1689. doi:10.2147/idr.S247944
  • Braun BR, Johnson AD. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics. 2000;155(1):57–67. doi:10.1093/genetics/155.1.57
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell. 2003;2(5):1053–1060. doi:10.1128/ec.2.5.1053-1060.2003
  • Polke M, Hube B, Jacobsen ID. Candida survival strategies. Adv Appl Microbiol. 2015;91:139–235. doi:10.1016/bs.aambs.2014.12.002
  • Fakhim H, Vaezi A, Dannaoui E, et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses. 2018;61(6):377–382. doi:10.1111/myc.12754
  • Biswal M, Rudramurthy SM, Jain N, et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J Hosp Infect. 2017;97(4):363–370. doi:10.1016/j.jhin.2017.09.009
  • Jackson BR, Chow N, Forsberg K, et al. On the origins of a species: what might explain the rise of Candida auris? J Fungi. 2019;5(3):58. doi:10.3390/jof5030058
  • Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio. 2019;10(4):e01397–19. doi:10.1128/mBio.01397-19
  • Kim SH, Iyer KR, Pardeshi L, et al. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. mBio. 2019;10(1):e02529–18. doi:10.1128/mBio.02529-18
  • Hernández-Chávez MJ, Pérez-García LA, Niño-Vega GA, Mora-Montes HM. Fungal strategies to evade the host immune recognition. J Fungi. 2017;3(4):51. doi:10.3390/jof3040051
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78. doi:10.1038/nrmicro1815
  • Richardson JP, Moyes DL. Adaptive immune responses to Candida albicans infection. Virulence. 2015;6(4):327–337. doi:10.1080/21505594.2015.1004977
  • Pathirana RU, Friedman J, Norris HL, et al. Fluconazole-resistant Candida auris is susceptible to salivary histatin 5 killing and to intrinsic host defenses. Antimicrob Agents Chemother. 2018;62(2):e01872–17. doi:10.1128/aac.01872-17
  • Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8(4):668–676. doi:10.1111/j.1462-5822.2005.00659.x
  • Johnson CJ, Davis JM, Huttenlocher A, Kernien JF, Nett JE. Emerging fungal pathogen Candida auris evades neutrophil attack. mBio. 2018;9(4). doi:10.1128/mBio.01403-18
  • Navarro-Arias MJ, Hernández-Chávez MJ, García-Carnero LC, et al. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 2019;12:783–794. doi:10.2147/idr.S197531
  • Wang Y, Zou Y, Chen X, et al. Innate immune responses against the fungal pathogen Candida auris. Nat Commun. 2022;13(1):3553. doi:10.1038/s41467-022-31201-x
  • Pérez-García LA, Csonka K, Flores-Carreón A, et al. Role of protein glycosylation in Candida parapsilosis cell wall integrity and host interaction. Original Research. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.00306
  • McKenzie CG, Koser U, Lewis LE, et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun. 2010;78(4):1650–1658. doi:10.1128/IAI.00001-10
  • West L, Lowman DW, Mora-Montes HM, et al. Differential virulence of Candida glabrata glycosylation mutants. J Biol Chem. 2013;288(30):22006–22018. doi:10.1074/jbc.M113.478743
  • Bruno M, Kersten S, Bain JM, et al. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol. 2020;5(12):1516–1531. doi:10.1038/s41564-020-0780-3
  • Gandra RM, McCarron P, Viganor L, et al. In vivo activity of copper(II), manganese(II), and silver(I) 1,10-phenanthroline chelates against Candida haemulonii using the Galleria mellonella model. Front Microbiol. 2020;11:470. doi:10.3389/fmicb.2020.00470
  • Xu S, Webb SE, Lau TCK, Cheng SH. Matrix metalloproteinases (MMPs) mediate leukocyte recruitment during the inflammatory phase of zebrafish heart regeneration. Sci Rep. 2018;8(1):7199. doi:10.1038/s41598-018-25490-w
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–336. doi:10.1038/ni904