653
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

Advance on Engineering of Bacteriophages by Synthetic Biology

, , , , , , ORCID Icon & show all
Pages 1941-1953 | Received 12 Jan 2023, Accepted 16 Mar 2023, Published online: 31 Mar 2023

References

  • Merril CR, Scholl D, Adhya SL. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov. 2003;2(6):489–497.
  • Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–786.
  • Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021;19:501–513.
  • Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 2016;80(3):523–543.
  • Kilcher S, Loessner MJ. Engineering bacteriophages as versatile biologics. Trends Microbiol. 2019;27(4):355–367.
  • Peng H, Chen IA. Phage engineering and the evolutionary arms race. Curr Opin Biotechnol. 2021;68:23–29.
  • Khan Mirzaei M, Deng L. New technologies for developing phage-based tools to manipulate the human microbiome. Trends Microbiol. 2021;30(2):131–142.
  • Hansen MF, Svenningsen SL, Røder HL, Middelboe M, Burmølle M. Big impact of the tiny: bacteriophage-bacteria interactions in biofilms. Trends Microbiol. 2019;27(9):739–752.
  • Citorik RJ, Mimee M, Lu TK. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opin Microbiol. 2014;19:59–69.
  • Brown R, Lengeling A, Wang B. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quant Biol. 2017;5(1):42–54.
  • Meng F, Ellis T. The second decade of synthetic biology: 2010–2020. Nat Commun. 2020;11(1):5174.
  • Voigt CA. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat Commun. 2020;11(1):6379.
  • Dams D, Brøndsted L, Drulis-Kawa Z, Briers Y. Engineering of receptor-binding proteins in bacteriophages and phage tail-like bacteriocins. Biochem Soc Trans. 2019;47(1):449–460.
  • Lu TK, Bowers J, Koeris MS. Advancing bacteriophage-based microbial diagnostics with synthetic biology. Trends Biotechnol. 2013;31(6):325–327.
  • Pizarro-Bauerle J, Ando H. Engineered bacteriophages for practical applications. Biol Pharm Bull. 2020;43(2):240–249.
  • Deng X, Wang L, You X, Dai P, Zeng Y. Advances in the T7 phage display system (Review). Mol Med Rep. 2018;17(1):714–720.
  • Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of antibody phage display technology. Toxins. 2018;10(6):236.
  • Lu TK, Koeris MS. The next generation of bacteriophage therapy. Curr Opin Microbiol. 2011;14(5):524–531.
  • Lobocka M, Dabrowska K, Gorski A. Engineered bacteriophage therapeutics: rationale, challenges and future. BioDrugs. 2021;35(3):255–280.
  • Marinelli LJ, Hatfull GF, Piuri M. Recombineering: a powerful tool for modification of bacteriophage genomes. Bacteriophage. 2012;2(1):5–14.
  • Pearson RE, Jurgensen S, Sarkis GJ, et al. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene. 1996;183(1–2):129–136.
  • Le S, He X, Tan Y, et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One. 2013;8(7):e68562.
  • Udi Qimron BM, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. PNAS. 2006;103(50):19039–19044.
  • Tran NQ, Udi Qimron LFR. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine. PNAS. 2008;105(27):9373–9378.
  • Grigonyte AM, Paul CH, MacDonald R, et al. Comparison of CRISPR and marker-based methods for the engineering of phage T7. Viruses. 2020;12(2):193.
  • Feher T, Karcagi I, Blattner FR, Pósfai G. Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol. 2012;5(4):466–476.
  • Jensen JD, Parks AR, Adhya S, Rattray AJ, Court DL. lambda recombineering used to engineer the genome of phage T7. Antibiotics. 2020;9(11):805.
  • Marinelli LJ, Piuri M, Swigoňová Z, et al. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One. 2008;3(12):e3957.
  • Duong MM, Carmody CM, Ma Q, Peters JE, Nugen SR. Optimization of T4 phage engineering via CRISPR/Cas9. Sci Rep. 2020;10(1):18229.
  • Schilling T, Dietrich S, Hoppert M, Hertel R. A CRISPR-Cas9-based toolkit for fast and precise in vivo genetic engineering of bacillus subtilis phages. Viruses. 2018;10(5):241.
  • Shen J, Zhou J, Chen GQ, Xiu ZL. Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9. J Virol. 2018;92(17):e00534–18.
  • Lemay ML, Tremblay DM, Moineau S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS Synth Biol. 2017;6(7):1351–1358.
  • Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42(14):9504–9513.
  • Bari SMN, Walker FC, Cater K, Aslan B, Hatoum-Aslan A. Strategies for editing virulent staphylococcal phages using CRISPR-Cas10. ACS Synth Biol. 2017;6(12):2316–2325.
  • Dong J, Chen C, Liu Y, Zhu J, Li M, Rao VB, Tao P. Engineering T4 bacteriophage for in vivo display by type V CRISPR-cas genome editing. ACS Synth Biol. 2021;10(10):2639–2648.
  • Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11(1):42–44.
  • Box AM, McGuffie MJ, O’Hara BJ, Seed KD. Functional analysis of bacteriophage immunity through a type I-E CRISPR-cas system in vibrio cholerae and its application in bacteriophage genome engineering. J Bacteriol. 2016;198(3):578–590.
  • Anderson J, Dueber JE, Leguia M, et al. BglBricks: a flexible standard for biological part assembly. J Biol Eng. 2010;4(1):1–12.
  • Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4(5):e5553.
  • Sarrion-Perdigones A, Vazquez-Vilar M, Palací J, et al. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013;162(3):1618–1631.
  • de Kok S, Stanton LH, Slaby T, et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol. 2014;3(2):97–106.
  • Gibson DG, Young L, Chuang RY, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–345.
  • Pulkkinen EM, Hinkley TC, Nugen SR. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integrat Biol. 2019;11(3):63–68.
  • Kouprina N, Larionov V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc. 2008;3(3):371–377.
  • Pires DP, Monteiro R, Mil-Homens D, Fialho A, Lu TK, Azeredo J. Designing P. aeruginosa synthetic phages with reduced genomes. Sci Rep. 2021;11(1):2164.
  • Ando H, Lemire S, Pires DP, Lu TK. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 2015;1(3):187–196.
  • Kilcher S, Studer P, Muessner C, Klumpp J, Loessner MJ. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci USA. 2018;115(3):567–572.
  • Smith HO, Cynthia Pfannkoch CAHI, Hutchison CA, Pfannkoch C, Venter JC. Generating a synthetic genome by whole genome assembly: Ø X174 bacteriophage from synthetic oligonucleotides. PNAS. 2003;100(26):15440–15445.
  • Yeom H, Ryu T, Lee AC, Cell-free bacteriophage genome synthesis using low-cost sequence-verified array-synthesized oligonucleotides. ACS Synth Biol. 2020;9(6):1376–1384.
  • Anam GB, Yadav S, Ayyaru S, Ahn YH. Nanocomposite membrane integrated phage enrichment process for the enhancement of high rate phage infection and productivity. Biochem Eng J. 2020;163:107740.
  • Malik DJ. Approaches for manufacture, formulation, targeted delivery and controlled release of phage-based therapeutics. Curr Opin Biotechnol. 2021;68:262–271.
  • Canchaya C, Fournous G, Brussow H. The impact of prophages on bacterial chromosomes. Mol Microbiol. 2004;53(1):9–18.
  • Vus K, Tarabara U, Balklava Z, et al. Association of novel monomethine cyanine dyes with bacteriophage MS2: a fluorescence study. J Mol Liq. 2020;302:112569.
  • Goodridge L, Mansel Griffiths JC. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl Environ Microbiol. 1999;65(4):1397–1404.
  • Mattias Karlsson KN, Davidson MJ, Nolkrantz K, Davidson MJ, et al. Electroinjection of colloid particles and biopolymers into single unilamellar liposomes and cells for bioanalytical applications. Anal Chem. 2000;72(23):5857–5862.
  • Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M. Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl Spectrosc. 2003;57(9):1138–1144.
  • Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D. A fully decompressed synthetic bacteriophage oX174 genome assembled and archived in yeast. Virology. 2012;434(2):278–284.
  • Chan LY, Kosuri S, Endy D. Refactoring bacteriophage T7. Mol Syst Biol. 2005;1(p. 2005):0018.
  • Studer P, Staubli T, Wieser N, et al. Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nat Commun. 2016;7:13631.
  • Nacyra Assad-Garcia RDS, Rachel Buzzeo B. Cross-genus “boot-up” of synthetic bacteriophage in staphylococcus aureus by using a new and efficient DNA Transformation method. Appl Environ Microbiol. 2022;88(3):e01486–21.
  • Garenne D, Noireaux V. Cell-free transcription-translation: engineering biology from the nanometer to the millimeter scale. Curr Opin Biotechnol. 2019;58:19–27.
  • Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet. 2020;21(3):151–170.
  • Garenne D, Bowden S, Noireaux V. Cell-free expression and synthesis of viruses and bacteriophages: applications to medicine and nanotechnology. Curr Opin Syst Biol. 2021;28:100373.
  • Bjornsti MA, Reilly BE, Anderson DL. In vitro assembly of the Bacillus subtilis bacteriophage Ø 29. Proc Nad Acad Sci. 1981;78(9):5861–5865.
  • Bjornsti MA, Reilly BE, Anderson DL. Morphogenesis of bacteriophage phi29 of bacillus subtilis: DNA-gp3 intermediate in in vivo and in vitro assembly. J Virol. 1982;41(2):508–517.
  • Rustad M, Eastlund A, Jardine P, Noireaux V. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth Biol. 2018;3(1):ysy002.
  • Shin J, Jardine P, Noireaux V. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synth Biol. 2012;1(9):408–413.
  • Rustad M, Eastlund A, Marshall R, Jardine P, Noireaux V. Synthesis of infectious bacteriophages in an E. coli-based cell-free expression system. J Vis Exp. 2017;2017(126):56144.
  • Garamella J, Marshall R, Rustad M, Noireaux V. The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol. 2016;5(4):344–355.
  • Garenne D, Thompson S, Brisson A, Khakimzhan A, Noireaux V. The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. Synth Biol. 2021;6(1):ysab017.
  • Vogele K, Falgenhauer E, von Schonberg S, Simmel FC, Pirzer T. Small antisense DNA-based gene silencing enables cell-free bacteriophage manipulation and genome replication. ACS Synth Biol. 2021;10(3):459–465.
  • Masker WE, Kuemmerle NB, Allison DP. In vitro packaging of bacteriophage T7 DNA synthesized in vitro. J Virol. 1978;27(1):149–163.
  • Dennehy JJ, Abedon ST. Adsorption: phage acquisition of bacteria. Bacteriophages. 2020;2020:1–25.
  • Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363:4.
  • Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 2020;68:151–159.
  • Taslem Mourosi J, Awe A, Guo W, et al. Understanding bacteriophage tail fiber interaction with host surface receptor: the key “blueprint” for reprogramming phage host range. Int J Mol Sci. 2022;23:20.
  • Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotechnol. 2005;115(1):101–107.
  • Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 2009;295(2):211–217.
  • Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. Extending the host range of bacteriophage particles for DNA transduction. Mol Cell. 2017;66(5):721–728 e3.
  • Yehl K, Lemire S, Yang AC, et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell. 2019;179(2):459–469.
  • Zhou Y, Xu X, Wei Y, et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science. 2021;372(6541):512–516.
  • Russell J, Bikard D. Learning from antibodies: phage host-range engineering. Cell Host Microbe. 2019;26(4):445–446.
  • Machera SJ, Niedziółka-Jönsson J, Szot-Karpińska K. Phage-based sensors in medicine: a review. Chemosensors. 2020;8(3):61.
  • Bayat F, Didar TF, Hosseinidoust Z. Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater. Environ Sci. 2021;8(2):367–389.
  • Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage. 2012;2(2):105–283.
  • Oda M, Morita M, Unno H, Tanji Y. Rapid detection of Escherichia coli O157: h7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol. 2004;70(1):527–534.
  • Zurier HS, Duong MM, Goddard JM, Nugen SR. Engineering biorthogonal phage-based nanobots for ultrasensitive, in situ bacteria detection. ACS Appl Bio Mater. 2020;3(9):5824–5831.
  • Peng H, Chen IA. Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano. 2019;13(2):1244–1252.
  • Yemini M, Levi Y, Yagil E, Rishpon J. Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry. 2007;70(1):180–184.
  • Blasco R, Murphy MJ, Sanders MF, Squirrell DJ. Specific assays for bacteria using phage mediated release of adenylate kinase. J Appl Microbiol. 2010;84(4):661–666.
  • Gupta V, Saxena HM. A new bacteriophage based luminescence assay for diagnosis of brucellosis. Indian J Exp Biol. 2017;55(5):296–302.
  • Hussain W, Ullah MW, Farooq U, Aziz A, Wang S. Bacteriophage-based advanced bacterial detection: concept, mechanisms, and applications. Biosens Bioelectron. 2021;177:112973.
  • Yang Q, Deng S, Xu J, et al. Poly (indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Mikrochim Acta. 2021;188(4):107.
  • Manivannan S, Park S, Jeong J, Kim K. Aggregation-free optical and colorimetric detection of Hg (II) with M13 bacteriophage-templated Au nanowires. Biosens Bioelectron. 2020;161:112237.
  • Peng H, Borg RE, Nguyen AB, Chen IA. Chimeric phage nanoparticles for rapid characterization of bacterial pathogens: detection in complex biological samples and determination of antibiotic sensitivity. ACS Sens. 2020;5(5):1491–1499.
  • Kim T, Hyeon T. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology. 2014;25(1):012001.
  • Ramasamy RP, Zhou Y. Bacteriophage-based electrochemical bacterial sensors, systems, and methods; 2018.
  • Jeff A, Conrad AJ. Biologic machines for the detection of biomolecules; 2015.
  • Barnard AML, Cass JA. Targetable nano-delivery vehicles to deliver anti-bacterial small acid-soluble spore protein (SASP) genes. Emerg Top Life Sci. 2021;5(5):637–641.
  • Setlow P. Spore resistance properties. Microbiology Spectrum. 2014;2(5):TBS-0003–2012.
  • Mohr SC, Sokolov NV, Chaomei HE. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc Natl Acad Sci USA. 1991;88:77–81.
  • Cass J, Barnard A, Fairhead H. Engineered bacteriophage as a delivery vehicle for antibacterial protein, SASP. Pharmaceuticals. 2021;14(10):1038.
  • Born Y, Fieseler L, Thöny V, Leimer N, Duffy B, Loessner MJ. Engineering of bacteriophages Y2:: dpoL1-Cand Y2:: luxABfor efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol. 2017;83:12.
  • Chan BK, Abedon ST. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 2015;21(1):85–99.
  • Sasikala D, Srinivasan P. Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathog. 2016;101:24–35.
  • Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol. 2007;75(1):125–132.
  • Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 2007;104(27):11197–11202.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.
  • Russel M. Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. Am Soc Microbiol. 1989;63(8):3284–3295.
  • Chasteen L, Ayriss J, Pavlik P, Bradbury AR. Eliminating helper phage from phage display. Nucleic Acids Res. 2006;34(21):e145.
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–250.
  • Krom RJ, Bhargava P, Lobritz MA, Collins JJ. Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett. 2015;15(7):4808–4813.
  • Wu WH, Zhang MP, Zhang F, et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy. Tumor Biol. 1996;99:129–141.
  • Ran B, Yuan Y, Xia W, et al. A photo-sensitizable phage for multidrug-resistant Acinetobacter baumannii therapy and biofilm ablation. Chem Sci. 2021;12(3):1054–1061.
  • Luo J, Xie Z, Lam JW, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;2001(18):1740–1741.
  • Chen M, ZhongáTang B. Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chem Sci. 2015;6(3):1932–1937.
  • Li Y, Shao A, Wang Y, et al. Morphology-tailoring of a red AIEgen from microsized rods to nanospheres for tumor-targeted bioimaging. Adv Mater. 2016;28(16):3187–3193.
  • Zhu D, Zhang J, Luo G, Duo Y, Tang BZ. Bright bacterium for hypoxia-tolerant photodynamic therapy against orthotopic colon tumors by an interventional method. Adv Sci. 2021;8(15):e2004769.
  • He X, Yang Y, Guo Y, et al. Phage-guided targeting, discriminative imaging, and synergistic killing of bacteria by AIE bioconjugates. J Am Chem Soc. 2020;142(8):3959–3969.
  • Kahrstrom CT. Microbiome: with a little help from my phage friends. Nat Rev Microbiol. 2013;11(8):507.
  • Dahlman S, Avellaneda-Franco L, Barr JJ. Phages to shape the gut microbiota? Curr Opin Biotechnol. 2021;68:89–95.
  • Khan Mirzaei M, Deng L. Sustainable Microbiome: a symphony orchestrated by synthetic phages. Microb Biotechnol. 2021;14(1):45–50.
  • Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev. 2021;176:113856.
  • Hsu BB, Gibson TE, Yeliseyev V, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe. 2019;25(6):803–814 e5.
  • Zheng DW, Dong X, Pan P, et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng. 2019;3(9):717–728.
  • Wang X, Wei Z, Yang K, et al. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol. 2019;37(12):1513–1520.
  • Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232.
  • Torres-Barcelo C, Hochberg ME. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016;24(4):249–256.
  • Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol. 2020;5(4):343–360.
  • Brooks SM, Alper HS. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat Commun. 2021;12(1):1390.