387
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Role of AlgC and GalU in the Intrinsic Antibiotic Resistance of Helicobacter pylori

, ORCID Icon, , , , ORCID Icon & show all
Pages 1839-1847 | Received 17 Jan 2023, Accepted 23 Mar 2023, Published online: 29 Mar 2023

References

  • Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002;347(15):1175–1186. doi:10.1056/NEJMra020542
  • Naumann M, Crabtree JE. Helicobacter pylori-induced epithelial cell signalling in gastric carcinogenesis. Trends Microbiol. 2004;12(1):29–36. doi:10.1016/j.tim.2003.11.005
  • Kocsmár É, Buzás GM, Szirtes I, et al. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides. Nat Commun. 2021;12(1):2255. doi:10.1038/s41467-021-22557-7
  • Malfertheiner P, Megraud F, Rokkas T, et al. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut. 2022. doi:10.1136/gutjnl-2022-327745
  • Liou JM, Lin JT, Chang CY, et al. Levofloxacin-based and clarithromycin-based triple therapies as first-line and second-line treatments for Helicobacter pylori infection: a randomised comparative trial with crossover design. Gut. 2010;59(5):572–578. doi:10.1136/gut.2009.198309
  • Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985;49(1):1–32. doi:10.1128/mr.49.1.1-32.1985
  • Berbís M, Sánchez-Puelles JM, Cañada FJ, Jiménez-Barbero J. Structure and Function of Prokaryotic UDP-Glucose Pyrophosphorylase, A Drug Target Candidate. Curr Med Chem. 2015;22(14):1687–1697. doi:10.2174/0929867322666150114151248
  • Paterson GK, Cone DB, Peters SE, Maskell DJ. The enzyme phosphoglucomutase (Pgm) is required by Salmonella enterica serovar Typhimurium for O-antigen production, resistance to antimicrobial peptides and in vivo fitness. Microbiology. 2009;155(Pt 10):3403–3410. doi:10.1099/mic.0.029553-0
  • Felek S, Muszyński A, Carlson RW, Tsang TM, Hinnebusch BJ, Krukonis ES. Phosphoglucomutase of Yersinia pestis is required for autoaggregation and polymyxin B resistance. Infect Immun. 2010;78(3):1163–1175. doi:10.1128/iai.00997-09
  • McKay GA, Woods DE, MacDonald KL, Poole K. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun. 2003;71(6):3068–3075. doi:10.1128/iai.71.6.3068-3075.2003
  • Zou Y, Feng S, Xu C, et al. The role of galU and galE of Haemophilus parasuis SC096 in serum resistance and biofilm formation. Vet Microbiol. 2013;162(1):278–284. doi:10.1016/j.vetmic.2012.08.006
  • Jiang SS, Lin TY, Wang WB, Liu MC, Hsueh PR, Liaw SJ. Characterization of UDP-Glucose Dehydrogenase and UDP-Glucose Pyrophosphorylase Mutants of Proteus mirabilis: defectiveness in Polymyxin B Resistance, Swarming, and Virulence. Antimicrob Agents Chemother. 2010;54(5):2000–2009. doi:10.1128/aac.01384-09
  • Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, Reidl J. Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun. 2001;69(1):435–445. doi:10.1128/iai.69.1.435-445.2001
  • Liu AN, Teng KW, Chew Y, Wang PC, Nguyen TTH, Kao MC. The Effects of HP0044 and HP1275 Knockout Mutations on the Structure and Function of Lipopolysaccharide in Helicobacter pylori Strain 26695. Biomedicines. 2022;10:1. doi:10.3390/biomedicines10010145
  • Wen Y, Huang H, Tang T, et al. AI-2 represses CagA expression and bacterial adhesion, attenuating the Helicobacter pylori-induced inflammatory response of gastric epithelial cells. Helicobacter. 2021:e12778. doi:10.1111/hel.12778
  • Yang H, Huang X, Zhang X, et al. AI-2 Induces Urease Expression Through Downregulation of Orphan Response Regulator HP1021 in Helicobacter pylori. Front Med. 2022;9. doi:10.3389/fmed.2022.790994
  • Cammarota G, Martino A, Pirozzi G, et al. High efficacy of 1-week doxycycline- and amoxicillin-based quadruple regimen in a culture-guided, third-line treatment approach for Helicobacter pylori infection. Aliment Pharmacol Ther. 2004;19(7):789–795. doi:10.1111/j.1365-2036.2004.01910.x
  • Li H, Yang T, Liao T, et al. The redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains. PLoS Pathog. 2017;13(3):e1006280. doi:10.1371/journal.ppat.1006280
  • Järvinen N, Mäki M, Räbinä J, Roos C, Mattila P, Renkonen R. Cloning and expression of Helicobacter pylori GDP-l-fucose synthesizing enzymes (GMD and GMER) in Saccharomyces cerevisiae. Eur j Biochem. 2001;268(24):6458–6464. doi:10.1046/j.0014-2956.2001.02601.x
  • Wu B, Zhang Y, Wang PG. Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose synthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori. Biochem Biophys Res Commun. 2001;285(2):364–371. doi:10.1006/bbrc.2001.5137
  • Kwon DH, Woo JS, Perng CL, Go MF, Graham DY, El-Zaatari FA. The effect of galE gene inactivation on lipopolysaccharide profile of Helicobacter pylori. Curr Microbiol. 1998;37(2):144–148. doi:10.1007/s002849900354
  • Li H, Liao T, Debowski AW, et al. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori. Helicobacter. 2016;21(6):445–461. doi:10.1111/hel.12301
  • Bertani B, Ruiz N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus. 2018;8:1. doi:10.1128/ecosalplus.ESP-0001-2018
  • Tang Y, Tang G, Pan L, Zhu H, Zhou S, Wei Z. Clinical factors associated with initial Helicobacter pylori eradication therapy: a retrospective study in China. Sci Rep. 2020;10(1):15403. doi:10.1038/s41598-020-72400-0
  • Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol. 2013;303(6–7):287–292. doi:10.1016/j.ijmm.2013.02.009
  • MacNair CR, Brown ED. Outer Membrane Disruption Overcomes Intrinsic, Acquired, and Spontaneous Antibiotic Resistance. mBio. 2020;11(5). doi:10.1128/mBio.01615-20
  • Coyne MJ, Russell KS, Coyle CL, Goldberg JB. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol. 1994;176(12):3500–3507. doi:10.1128/jb.176.12.3500-3507.1994
  • Zhou D, Stephens D, Gibson B, et al. Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, and characterization of the phosphoglucomutase gene. Proteins. 1994;269(15):11162–11169. doi:10.1016/S0021-9258(19)78105-8
  • West NP, Jungnitz H, Fitter JT, McArthur JD, Guzmán CA, Walker MJ. Role of phosphoglucomutase of Bordetella bronchiseptica in lipopolysaccharide biosynthesis and virulence. Infect Immun. 2000;68(8):4673–4680. doi:10.1128/iai.68.8.4673-4680.2000
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/s1473-3099(17)30753-3
  • Taylor DE, Ge Z, Purych D, Lo T, Hiratsuka K. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob Agents Chemother. 1997;41(12):2621–2628. doi:10.1128/aac.41.12.2621
  • Khan R, Nahar S, Sultana J, Ahmad MM, Rahman M. T2182C mutation in 23S rRNA is associated with clarithromycin resistance in Helicobacter pylori isolates obtained in Bangladesh. Antimicrob Agents Chemother. 2004;48(9):3567–3569. doi:10.1128/aac.48.9.3567-3569.2004
  • Edwards DI. Nitroimidazole drugs--action and resistance mechanisms. I. Mechanisms of action. J Antimicrob Chemother. 1993;31(1):9–20. doi:10.1093/jac/31.1.9
  • Jeong JY, Mukhopadhyay AK, Dailidiene D, et al. Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J Bacteriol. 2000;182(18):5082–5090. doi:10.1128/jb.182.18.5082-5090.2000
  • Luna E, Kim S, Gao Y, Widmalm G, Im W. Influences of Vibrio cholerae Lipid A Types on LPS Bilayer Properties. J Phys Chem B. 2021;125(8):2105–2112. doi:10.1021/acs.jpcb.0c09144
  • Vuorio R, Vaara M. The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility. Antimicrob Agents Chemother. 1992;36(4):826–829. doi:10.1128/aac.36.4.826
  • Lee CR, Lee JH, Jeong BC, Lee SH. Lipid a biosynthesis of multidrug-resistant pathogens - a novel drug target. Curr Pharm Des. 2013;19(36):6534–6550. doi:10.2174/13816128113199990494
  • Lin J, Zhang X, Wen Y, Chen H, She F, Newly Discovered A. Drug Resistance Gene rfaF In Helicobacter pylori. Infect Drug Resist. 2019;12:3507–3514. doi:10.2147/IDR.S231152
  • Stiers KM, Muenks AG, Beamer LJ. Biology, Mechanism, and Structure of Enzymes in the alpha-d-Phosphohexomutase Superfamily. Adv Protein Chem Struct Biol. 2017;109:265–304. doi:10.1016/bs.apcsb.2017.04.005
  • Qaria MA, Kumar N, Hussain A, et al. Roles of Cholesteryl-α-Glucoside Transferase and Cholesteryl Glucosides in Maintenance of Helicobacter pylori Morphology, Cell Wall Integrity, and Resistance to Antibiotics. mBio. 2018;9:6. doi:10.1128/mBio.01523-18
  • Kobayashi J, Kawakubo M, Fujii C, et al. Cholestenone functions as an antibiotic against Helicobacter pylori by inhibiting biosynthesis of the cell wall component CGL. Proc Natl Acad Sci U S A. 2021;118:16. doi:10.1073/pnas.2016469118
  • Mehra-Chaudhary R, Mick J, Tanner JJ, Henzl MT, Beamer LJ. Crystal structure of a bacterial phosphoglucomutase, an enzyme involved in the virulence of multiple human pathogens. Proteins. 2011;79(4):1215–1229. doi:10.1002/prot.22957
  • Lai X, Wu J, Chen S, Zhang X, Wang H. Expression, purification, and characterization of a functionally active Mycobacterium tuberculosis UDP-glucose pyrophosphorylase. Protein Expr Purif. 2008;61(1):50–56. doi:10.1016/j.pep.2008.05.015