279
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

ApoE Mimetic Peptide COG1410 Exhibits Strong Additive Interaction with Antibiotics Against Mycobacterium smegmatis

, , , , , , ORCID Icon & ORCID Icon show all
Pages 1801-1812 | Received 17 Jan 2023, Accepted 22 Mar 2023, Published online: 28 Mar 2023

References

  • Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354–373. doi:10.1093/femsre/fux011
  • Allué-Guardia A, García JI, Torrelles JB. Evolution of drug-resistant mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol. 2021;12:612675. doi:10.3389/fmicb.2021.612675
  • World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO; 2021.
  • Tadolini M, Garcia-Prats AJ, D’Ambrosio L, et al. Compassionate use of new drugs in children and adolescents with multidrug-resistant and extensively drug-resistant tuberculosis: early experiences and challenges. Eur Respir J. 2016;48(3):938–943. doi:10.1183/13993003.00705-2016
  • Chakraborty S, Rhee KY. Tuberculosis drug development: history and evolution of the mechanism-based paradigm. Cold Spring Harb Perspect Med. 2015;5(8):a021147. doi:10.1101/cshperspect.a021147
  • Bardan A, Nizet V, Gallo RL. Antimicrobial peptides and the skin. Expert Opin Biol Ther. 2004;4(4):543–549. doi:10.1517/14712598.4.4.543
  • Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol. 2012;132(3 Pt 2):887–895. doi:10.1038/jid.2011.387
  • Tomasinsig L, Zanetti M. The cathelicidins--structure, function and evolution. Curr Protein Pept Sci. 2005;6(1):23–34. doi:10.2174/1389203053027520
  • AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res. 2018;128:288–305. doi:10.1016/j.phrs.2017.10.011
  • Dürr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 2006;1758(9):1408–1425. doi:10.1016/j.bbamem.2006.03.030
  • Deshpande D, Grieshober M, Wondany F, et al. Super-resolution microscopy reveals a direct interaction of intracellular mycobacterium tuberculosis with the antimicrobial peptide LL-37. Int J Mol Sci. 2020;21(18):6741. doi:10.3390/ijms21186741
  • Peláez Coyotl EA, Barrios Palacios J, Muciño G, et al. Antimicrobial peptide against mycobacterium tuberculosis that activates autophagy is an effective treatment for tuberculosis. Pharmaceutics. 2020;12(11):1071. doi:10.3390/pharmaceutics12111071
  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–141. doi:10.1016/j.it.2008.12.003
  • Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J Biol Chem. 1987;262(29):14352–14360. doi:10.1016/S0021-9258(18)47945-8
  • Zanfardino A, Bosso A, Gallo G, et al. Human apolipoprotein E as a reservoir of cryptic bioactive peptides: the case of ApoE 133–167. J Peptide Sci. 2018;24(7):e3095. doi:10.1002/psc.3095
  • Wang CQ, Yang CS, Yang Y, Pan F, He LY, Wang AM. An apolipoprotein E mimetic peptide with activities against multidrug-resistant bacteria and immunomodulatory effects. J Peptide Sci. 2013;19(12):745–750. doi:10.1002/psc.2570
  • Pane K, Sgambati V, Zanfardino A, et al. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J. 2016;283(11):2115–2131. doi:10.1111/febs.13725
  • Puthia M, Marzinek JK, Petruk G, Ertürk Bergdahl G, Bond PJ, Petrlova J. Antibacterial and anti-inflammatory effects of apolipoprotein E. Biomedicines. 2022;10(6). doi:10.3390/biomedicines10061430
  • Petruk G, Elvén M, Hartman E, et al. The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins. J Lipid Res. 2021;62:100086. doi:10.1016/j.jlr.2021.100086
  • Chiu LS, Anderton RS, Cross JL, et al. Assessment of R18, COG1410, and APP96-110 in excitotoxicity and traumatic brain injury. Transl Neurosci. 2017;8:147–157. doi:10.1515/tnsci-2017-0021
  • Cao F, Jiang Y, Wu Y, et al. Apolipoprotein E-mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury. J Neurotrauma. 2016;33(2):175–182. doi:10.1089/neu.2015.3887
  • Wang B, Zhang FW, Wang WX, et al. Apolipoprotein E mimetic peptide COG1410 combats pandrug-resistant Acinetobacter baumannii. Front Microbiol. 2022;13:934765. doi:10.3389/fmicb.2022.934765
  • Laskowitz DT, McKenna SE, Song P, et al. COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J Neurotrauma. 2007;24(7):1093–1107. doi:10.1089/neu.2006.0192
  • Cruz J, Flórez J, Torres R, et al. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). Nanotechnology. 2017;28(13):135102. doi:10.1088/1361-6528/aa5f63
  • Nur Ain Mohd A, Nur Izzati R, Fatin Amira A, et al. Immunomodulation of murine macrophages RAW264.7 infected with mycobacterium smegmatis. Asian J Med Biomed. 2020;4(SI1):40–46.
  • Gupta K, Singh S, van Hoek ML. Short, synthetic cationic peptides have antibacterial activity against Mycobacterium smegmatis by forming pores in membrane and synergizing with antibiotics. Antibiotics. 2015;4(3):358–378. doi:10.3390/antibiotics4030358
  • Esteban J, García-Coca M. Mycobacterium Biofilms. Front Microbiol. 2018;8. doi:10.3389/fmicb.2017.02651
  • Bhat KH, Yaseen I. Mycobacterium tuberculosis: macrophage takeover and modulation of innate effector responses. In: Mycobacterium-Research and Development. IntechOpen; 2018.
  • Zhu C, Liu Y, Hu L, Yang M, He Z-G. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J Biol Chem. 2018;293(43):16741–16750. doi:10.1074/jbc.RA118.002693
  • Anuchin AM, Mulyukin AL, Suzina NE, Duda VI, El-Registan GI, Kaprelyants AS. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology. 2009;155(Pt 4):1071–1079. doi:10.1099/mic.0.023028-0
  • Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K-I, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;70(5):685–690. doi:10.1038/ja.2017.23
  • Ramón-García S, Mikut R, Ng C, et al. Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob Agents Chemother. 2013;57(5):2295–2303. doi:10.1128/AAC.00175-13
  • Yamada H, Chikamatsu K, Aono A, et al. Smegmatis be used as a real alternative for M. tuberculosis? Eur Respir J. 2016;48(suppl 60):PA2789.
  • Kartmann B, Stengler S, Niederweis M. Porins in the cell wall of Mycobacterium tuberculosis. J Bacteriol. 1999;181(20):6543–6546. doi:10.1128/JB.181.20.6543-6546.1999
  • Jas T, J R, Rajan A, Shankar V. J R, Rajan A, Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health. 2020;13(9):1255–1264. doi:10.1016/j.jiph.2020.06.023
  • Duong L, Gross SP, Siryaporn A. Developing Antimicrobial Synergy With AMPs. Front Med Technol. 2021;3:640981. doi:10.3389/fmedt.2021.640981
  • Wu CL, Hsueh JY, Yip BS, Chih YH, Peng KL, Cheng JW. Antimicrobial peptides display strong synergy with vancomycin against vancomycin-resistant E. faecium, S. aureus, and wild-type E. coli. Int J Mol Sci. 2020;21(13):4578.
  • Abedinzadeh M, Gaeini M, Sardari S. Natural antimicrobial peptides against Mycobacterium tuberculosis. J Antimicrob Chemother. 2015;70(5):1285–1289. doi:10.1093/jac/dku570
  • Aguilar-Pérez C, Gracia B, Rodrigues L, et al. Synergy between circular bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2018;62(9):e00359–00318. doi:10.1128/AAC.00359-18
  • Sharma A, Gaur A, Kumar V, et al. Antimicrobial activity of synthetic antimicrobial peptides loaded in poly-Ɛ-caprolactone nanoparticles against mycobacteria and their functional synergy with rifampicin. Int J Pharm. 2021;608:121097. doi:10.1016/j.ijpharm.2021.121097
  • Rao KU, Henderson DI, Krishnan N, et al. A broad spectrum anti-bacterial peptide with an adjunct potential for tuberculosis chemotherapy. Sci Rep. 2021;11(1):4201. doi:10.1038/s41598-021-83755-3
  • Usmani SS, Kumar R, Kumar V, Singh S, Raghava GPS. AntiTbPdb: a knowledgebase of anti-tubercular peptides. Database. 2018;2018. doi:10.1093/database/bay025
  • Oliveira GS, Costa RP, Gomes P, Gomes MS, Silva T, Teixeira C. Antimicrobial peptides as potential anti-tubercular leads: a concise review. Pharmaceuticals. 2021;14(4):323. doi:10.3390/ph14040323
  • Carroll J, Field D, O’Connor PM, et al. Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioeng Bugs. 2010;1(6):408–412. doi:10.4161/bbug.1.6.13642