891
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Prevalence of Quorum Sensing and Virulence Factor Genes Among Pseudomonas aeruginosa Isolated from Patients Suffering from Different Infections and Their Association with Antimicrobial Resistance

, ORCID Icon, ORCID Icon, &
Pages 2371-2385 | Received 18 Jan 2023, Accepted 13 Apr 2023, Published online: 21 Apr 2023

References

  • Awan AB, Schiebel J, Böhm A, et al. Association of biofilm formation and cytotoxic potential with multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Excli J. 2019;18:79.
  • Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(9):1133–1148. doi:10.1099/jmm.0.009142-0
  • Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351–368. doi:10.2165/00003495-200767030-00003
  • Schaechter M. Encyclopedia of Microbiology. Academic Press; 2009.
  • Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998;4(4):551. doi:10.3201/eid0404.980405
  • Cevahir N, Demir M, Kaleli I, Gurbuz M, Tikvesli S. Evaluation of biofilm production, gelatinase activity, and mannose-resistant hemagglutination in Acinetobacter baumannii strains. J Microbiol Immunol Infect. 2008;41(6):513–518.
  • Ciofu O, Lee B, Johannesson M, Hermansen NO, Meyer P, Høiby N. Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology. 2008;154(1):103–113. doi:10.1099/mic.0.2007/010421-0
  • Raafat MM, Ali-Tammam M, Ali AE. Phenotypic and genotypic characterization of Pseudomonas aeruginosa isolates from Egyptian hospitals. Afr J Microbiol Res. 2016;10(39):1645–1653. doi:10.5897/AJMR2016.8254
  • Mahmoud AB, Zahran WA, Hindawi GR, Labib AZ, Galal R. Prevalence of multidrug-resistant Pseudomonas aeruginosa in patients with nosocomial infections at a university hospital in Egypt, with special reference to typing methods. J Virol Microbiol. 2013;13:165.
  • Lim K-T, Yasin RM, Yeo -C-C, et al. Genetic fingerprinting and antimicrobial susceptibility profiles of Pseudomonas aeruginosa hospital isolates in Malaysia. J Microbiol Immunol Infect. 2009;42(3):197–209.
  • Talebi-Taher M, Gholami A, Rasouli-Kouhi S, Adabi M, Adabi M. Role of efflux pump inhibitor in decreasing antibiotic cross-resistance of Pseudomonas aeruginosa in a burn hospital in Iran. J Infect Dev Count. 2016;10(06):600–604. doi:10.3855/jidc.7619
  • Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial surveillance program (Latin America, 2008–2010). Diagn Microbiol Infect Dis. 2012;73(4):354–360. doi:10.1016/j.diagmicrobio.2012.04.007
  • İnat G, Sırıken B, Başkan C, Erol İ, Yıldırım T, Çiftci A. Quorum sensing systems and related virulence factors in Pseudomonas aeruginosa isolated from chicken meat and ground beef. Sci Rep. 2021;11(1):15639. doi:10.1038/s41598-021-94906-x
  • Krall R, Schmidt G, Aktories K, Barbieri JT. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun. 2000;68(10):6066–6068. doi:10.1128/IAI.68.10.6066-6068.2000
  • Fazeli N, Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J. 2014;16(10). doi:10.5812/ircmj.15722
  • Christensen GD, Simpson WA, Younger J, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006. doi:10.1128/jcm.22.6.996-1006.1985
  • Wayne P. Clinical and Laboratory Standards Institute: performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI Doc M100-S20. 2010;85(4):355–359.
  • Agnello M, Wong-Beringer A. Differentiation in Quinolone Resistance by Virulence Genotype in Pseudomonas Aeruginosa. Public Library of Science San Francisco; 2012.
  • Badamchi A, Masoumi H, Javadinia S, Asgarian R, Tabatabaee A. Molecular detection of six virulence genes in Pseudomonas aeruginosa isolates detected in children with urinary tract infection. Microb Pathog. 2017;107:44–47. doi:10.1016/j.micpath.2017.03.009
  • Asghari-Moghadam N, Rasoolzadeh R, Hoseini-Moghadam S-M-M, Seifi M, Pour-Shafie MR, Talebi M. Isolation, antibiotic resistance determination and genotypic analysis of pseudomonas aeruginosa strains causing urinary tract infection in catheterized patients of shohada and Labafi Nejad Hospitals, Tehran, Iran. J Isfahan Med Sch. 2014;32(272):1–8.
  • Cowell BA, Twining SS, Hobden JA, Kwong MS, Fleiszig SM. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology. 2003;149(8):2291–2299. doi:10.1099/mic.0.26280-0
  • Khan MA, Faiz A. Antimicrobial resistance patterns of Pseudomonas aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med. 2016;36(1):23–28. doi:10.5144/0256-4947.2016.23
  • Shahcheraghi F, Nikbin V-S, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microb Drug Resist. 2009;15(1):37–39. doi:10.1089/mdr.2009.0880
  • Nakhaei MM, Hosseini HM, Mobaiyen H. Evaluation of antibiotic resistance and detection of CTX-M type extended spectrum beta-lactamase in clinical isolates of pseudomonas aeruginosa in mashhad. J Ilam Univ Med Sci. 2014;22(5):70–77.
  • Zahra T, Rezvan M, Ahmad K. Detection and characterization of multidrug resistance and extended-spectrum-beta-lactamase-producing (ESBLS) Pseudomonas aeruginosa isolates in teaching hospital. Afr J Microbiol Res. 2011;5(20):3223–3228. doi:10.5897/AJMR11.260
  • Tambekar D, Dhanorkar D, Gulhane S, Khandelwal V, Dudhane M. Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. Afr J Biotechnol. 2006;5:17.
  • Ehinmidu JO. Antibiotics susceptibility patterns of urine bacterial isolates in Zaria, Nigeria. Trop J Pharm Res. 2003;2(2):223–228.
  • Nwanze P, Nwaru L, Oranusi S, et al. Urinary tract infection in Okada village: prevalence and antimicrobial susceptibility pattern. Sci Res Essays. 2007;2(4):112–116.
  • Saeidi S, Alavi-Naini R, Shayan S. Antimicrobial susceptibility and distribution of tem and ctx-m genes among esbl-producing Klebsiella pneumoniae and Pseudomonas aeruginosa causing urinary tract infections. Zahedan J Res Med Sci. 2014;16(4):1–5.
  • Akingbade O, Balogun S, Ojo D, et al. Plasmid profile analysis of multidrug resistant Pseudomonas aeruginosa isolated from wound infections in South West, Nigeria. World Appl Sci J. 2012;20(6):766–775.
  • Ilham HH, Banyan A. Isolation of Pseudomonas aeruginosa from clinical cases and environmental samples, and analysis of its antibiotic resistant spectrum at Hilla Teaching Hospital; 2011.
  • Bagge N, Schuster M, Hentzer M, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother. 2004;48(4):1175–1187. doi:10.1128/AAC.48.4.1175-1187.2004
  • Koeppen K, Barnaby R, Jackson AA, Gerber SA, Hogan DA, Stanton BA. Tobramycin reduces key virulence determinants in the proteome of Pseudomonas aeruginosa outer membrane vesicles. PLoS One. 2019;14(1):e0211290. doi:10.1371/journal.pone.0211290
  • Kadhim D, Ali Mi R. Prevalence study of quorum sensing groups among clinical isolates of Pseudomonas aeruginosa. Int J Curr Microbiol App Sci. 2014;3(11):204–215.
  • Aghamollaei H, Azizi BK, Moosazadeh MM. Rapid detection of Pseudomonas aeruginosa by PCR method using specific primers of quorum sensing LasI gene. Armaghane Danesh. 2014;18(9):723–735.
  • Senturk S, Ulusoy S, Bosgelmez-Tinaz G, Yagci A. Quorum sensing and virulence of Pseudomonas aeruginosa during urinary tract infections. J Infect Dev Count. 2012;6(06):501–507. doi:10.3855/jidc.2543
  • Bjarnsholt T, Jensen PØ, Fiandaca MJ, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009;44(6):547–558. doi:10.1002/ppul.21011
  • Rutherford S, Bassler B. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2:a012427–a012427. doi:10.1101/cshperspect.a012427
  • Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol. 2022;24(6):2630–2656. doi:10.1111/1462-2920.15784
  • Papenfort K, Bassler BL. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–588. doi:10.1038/nrmicro.2016.89
  • Karthic A, Gopinath P. Detection of biofilm among clinical isolates of Pseudomonas aeruginosa by tissue culture plate (TCP) method. J Chem Pharm Sci. 2016;9(4):3236–3238.
  • Heydari S, Eftekhar F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol. 2015;8(3). doi:10.5812/jjm.15514
  • Rewatkar A, Wadher B. Staphylococcus aureus and Pseudomonas aeruginosa-Biofilm formation Methods. J Pharm Biol Sci. 2013;8(5):36–40.
  • Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24(1):350–359. doi:10.1016/j.drudis.2018.07.003
  • Wretlind B, Olǵerts RP. Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis. 1983;5:S998–S1004. doi:10.1093/clinids/5.Supplement_5.S998
  • Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health. 2009;2(3):101–111. doi:10.1016/j.jiph.2009.08.003
  • Berry A, DeVault JD, Chakrabarty A. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol. 1989;171(5):2312–2317. doi:10.1128/jb.171.5.2312-2317.1989
  • Kamath S, Kapatral V, Chakrabarty A. Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol Microbiol. 1998;30(5):933–941. doi:10.1046/j.1365-2958.1998.01121.x
  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881. doi:10.3201/eid0809.020063
  • Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An organ system-based synopsis of pseudomonas aeruginosa virulence. Virulence. 2021;12(1):1469–1507. doi:10.1080/21505594.2021.1926408
  • Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML. Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun. 1999;67(5):2371–2376. doi:10.1128/IAI.67.5.2371-2376.1999
  • Wargo MJ, Gross MJ, Rajamani S, et al. Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2011;184(3):345–354. doi:10.1164/rccm.201103-0374OC
  • Galdino ACM, Viganor L, de Castro AA, et al. Disarming Pseudomonas aeruginosa Virulence by the Inhibitory Action of 1, 10-Phenanthroline-5,6-Dione-Based Compounds: elastase B (LasB) as a chemotherapeutic target. Front Microbiol. 2019;10:1701. doi:10.3389/fmicb.2019.01701
  • Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: a Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017;7:39. doi:10.3389/fcimb.2017.00039
  • Anju VT, Busi S, Imchen M, et al. Polymicrobial infections and biofilms: clinical significance and eradication strategies. Antibiotics. 2022;11(12):1731. doi:10.3390/antibiotics11121731
  • Qin S, Xiao W, Zhou C, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. doi:10.1038/s41392-022-01056-1
  • Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol. 2022;15(6):1695–1718. doi:10.1111/1751-7915.13981
  • Olaniyi TD, Adetutu A. In silico anti-quorum sensing activities of phytocompounds of Psidium guajava in Salmonella enterica serovar Typhi. J Umm Al-Qura Univ Appl Sci. 2023. doi:10.1007/s43994-023-00029-6
  • Martins VV, Pitondo‐Silva A, de Melo Manço L, et al. Pathogenic potential and genetic diversity of environmental and clinical isolates of P seudomonas aeruginosa. Apmis. 2014;122(2):92–100. doi:10.1111/apm.12112
  • Woods DE, Cryz SJ, Friedman R, Iglewski B. Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infect Immun. 1982;36(3):1223–1228. doi:10.1128/iai.36.3.1223-1228.1982
  • Lima JL, Alves LR, Jacomé PR, Bezerra Neto JP, Maciel MAV, Morais MM. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis. 2018;22:129–136. doi:10.1016/j.bjid.2018.03.003