310
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Carbapenem-Resistant and ESBL-Producing Enterobacterales Emerging in Central Texas

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1249-1261 | Received 03 Jan 2023, Accepted 24 Feb 2023, Published online: 02 Mar 2023

References

  • Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215:S28–S36. doi:10.1093/infdis/jiw282
  • Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN. Variations in the occurrence of resistance phenotypes and carbapenemase genes among. Open Forum Infect Dis. 2019;6:S23–S33. doi:10.1093/ofid/ofy347
  • Bouganim R, Dykman L, Fakeh O, et al. The clinical and molecular epidemiology of noncarbapenemase-producing carbapenem-resistant. Open Forum Infect Dis. 2020;7:ofaa299. doi:10.1093/ofid/ofaa299
  • Suay-García B, Pérez-Gracia MT. Present and future of carbapenem-resistant. Antibiotics. 2019;8:435–456.
  • Woodworth KR, Walters MS, Weiner LM, et al. Vital signs: containment of novel multidrug-resistant organisms and resistance mechanisms - United States, 2006-2017. MMWR Morb Mortal Wkly Rep. 2018;67:396–401. doi:10.15585/mmwr.mm6713e1
  • Bezabih YM, Sabiiti W, Alamneh E, et al. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J Antimicrob Chemother. 2021;76:22–29. doi:10.1093/jac/dkaa399
  • Tian X, Sun S, Jia X, Zou H, Li S, Zhang L. Epidemiology of and risk factors for infection with extended-spectrum β-lactamase-producing carbapenem-resistant Enterobacteriaceae: results of a double case-control study. Infect Drug Resist. 2018;11:1339–1346. doi:10.2147/IDR.S173456
  • CDC (Centers for Disease Control and Prevention). CRE technical information; 2019. Available from: https://www.cdc.gov/hai/organisms/cre/technical-info.html. Accessed 29, Jul 2022.
  • CDC AR Laboratory Network. Guidance for testing CRE & CRPA in state and local public health laboratories; 2020.
  • Pierce VM, Simner PJ, Lonsway DR, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol. 2017;55:2321–2333. doi:10.1128/JCM.00193-17
  • NHSN (National Healthcare Safety Network). Identifying Healthcare-associated Infections (HAI) for NHSN Surveillance; 2022.
  • Bushnell B. BBTools. Available from: sourceforge.net/projects/bbmap/. Accessed February 24, 2023.
  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: bIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.
  • Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010;11(1):595. doi:10.1186/1471-2105-11-595
  • Hennart M, Guglielmini J, Maiden MCJ, Jolley KA, Criscuolo A, Brisse S. A dual barcoding approach to bacterial strain nomenclature: genomic taxonomy of Klebsiella pneumoniae strains. Molecular Biology and Evolution. 2022;39 7 :msac135 doi:10.1093/molbev/msac135.
  • Brisse S, Passet V, Haugaard AB, et al. wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol. 2013;51(12):4073–4078. doi:10.1128/JCM.01924-13
  • McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–3357. doi:10.1128/AAC.00419-13
  • Carattoli A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi:10.1128/AAC.02412-14
  • Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65:490–495. doi:10.1093/jac/dkp498
  • Brisse S, Milatovic D, Fluit AC, et al. Comparative in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin against Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes clinical isolates with alterations in GyrA and ParC proteins. Antimicrob Agents Chemother. 1999;43:2051–2055. doi:10.1128/AAC.43.8.2051
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi:10.1016/j.diagmicrobio.2010.12.002
  • Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2. doi:10.1038/msb4100050
  • Tadese BK, Darkoh C, DeSantis SM, Mgbere O, Fujimoto K. Clinical epidemiology of carbapenem-resistant Enterobacterales in the greater Houston region of Texas: a 6-year trend and surveillance analysis. J Glob Antimicrob Resist. 2022;30:222–227. doi:10.1016/j.jgar.2022.06.019
  • Adeolu M, Alnajar S, Naushad S, Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–5599. doi:10.1099/ijsem.0.001485
  • Liu P, Li P, Jiang X, et al. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J Bacteriol. 2012;194:1841–1842. doi:10.1128/JB.00043-12
  • Sugawara E, Kojima S, Nikaido H. Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-lactams than their Escherichia coli Homologs OmpF and OmpC. J Bacteriol. 2016;198:3200–3208. doi:10.1128/JB.00590-16
  • Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, Benedí VJ, Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol. 1999;181:2726–2732. doi:10.1128/JB.181.9.2726-2732.1999
  • Black CA, So W, Dallas SS, et al. Predominance of non-carbapenemase producing carbapenem-resistant Enterobacterales in South Texas. Front Microbiol. 2021;11:623574. doi:10.3389/fmicb.2020.623574
  • Preston KE, Radomski CC, Venezia RA. Nucleotide sequence of the chromosomal ampC gene of Enterobacter aerogenes. Antimicrob Agents Chemother. 2000;44:3158–3162. doi:10.1128/AAC.44.11.3158-3162.2000
  • Malek A, McGlynn K, Taffner S, et al. Next-generation-sequencing-based hospital outbreak investigation yields insight into Klebsiella aerogenes population structure and determinants of carbapenem resistance and pathogenicity. Antimicrob Agents Chemother. 2019;63. doi:10.1128/AAC.02577-18
  • Lavigne JP, Sotto A, Nicolas-Chanoine MH, et al. Membrane permeability, a pivotal function involved in antibiotic resistance and virulence in Enterobacter aerogenes clinical isolates. Clin Microbiol Infect. 2012;18:539–545. doi:10.1111/j.1469-0691.2011.03607.x
  • Tian X, Wang Q, Perlaza-Jiménez L, et al. First description of antimicrobial resistance in carbapenem-susceptible Klebsiella pneumoniae after imipenem treatment, driven by outer membrane remodeling. BMC Microbiol. 2020;20:218. doi:10.1186/s12866-020-01898-1
  • Wyres KL, Hawkey J, Hetland MAK, et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother. 2019;74:577–581. doi:10.1093/jac/dky492
  • Castanheira M, Farrell SE, Wanger A, Rolston KV, Jones RN, Mendes RE. Rapid expansion of KPC-2-producing Klebsiella pneumoniae isolates in two Texas hospitals due to clonal spread of ST258 and ST307 lineages. Microb Drug Resist. 2013;19:295–297. doi:10.1089/mdr.2012.0238
  • Peirano G, Chen L, Kreiswirth BN, Pitout JDD. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother. 2020;64. doi:10.1128/AAC.01148-20
  • van Duin D, Arias CA, Komarow L, et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis. 2020;20:731–741. doi:10.1016/S1473-3099(19)30755-8
  • Cascales E, Buchanan SK, Duché D, et al. Colicin biology. Microbiol Mol Biol Rev. 2007;71:158–229. doi:10.1128/MMBR.00036-06
  • Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J. 2011;5:71–81. doi:10.1038/ismej.2010.90
  • Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. Cell Mol Life Sci. 2009;66:82–93. doi:10.1007/s00018-008-8378-6
  • Janion C. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci. 2008;4:338–344. doi:10.7150/ijbs.4.338
  • Gillor O, Vriezen JAC, Riley MA. The role of SOS boxes in enteric bacteriocin regulation. Microbiology. 2008;154:1783–1792. doi:10.1099/mic.0.2007/016139-0
  • Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Biochim Biophys Acta. 2014;1843:1717–1731. doi:10.1016/j.bbamcr.2014.04.010
  • Hagan EC, Mobley HL. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun. 2007;75:3941–3949. doi:10.1128/IAI.00337-07
  • Pugsley AP, Rosenbusch JP. Release of colicin E2 from Escherichia coli. J Bacteriol. 1981;147:186–192. doi:10.1128/jb.147.1.186-192.1981
  • Pugsley AP, Goldzahl N, Barker RM. Colicin E2 production and release by Escherichia coli K12 and other Enterobacteriaceae. J Gen Microbiol. 1985;131:2673–2686. doi:10.1099/00221287-131-10-2673