180
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Intra-Abdominal Hypertension Contributes to the Development of Ventilator-Associated Pneumonia from Intestinal Bacteria

, , , , &
Pages 1913-1921 | Received 19 Jan 2023, Accepted 15 Mar 2023, Published online: 31 Mar 2023

References

  • Gao B, Li X, Yang F, et al. Molecular epidemiology and risk factors of ventilator-associated pneumonia infection caused by carbapenem-resistant enterobacteriaceae. Front Pharmacol. 2019;10:262. doi:10.3389/fphar.2019.00262
  • Papakrivou E, Makris D, Manoulakas E, et al. Intra-abdominal hypertension causes bacterial growth in lungs: an animal study. Biomed Res Int. 2017;2017:4601348. doi:10.1155/2017/4601348
  • Papakrivou E, Makris D, Manoulakas E, Karvouniaris M, Zakynthinos E. Intra-abdominal hypertension is a risk factor for increased VAP incidence: a prospective cohort study in the ICU of a tertiary hospital. J Intensive Care Med. 2018;885066618779369. doi:10.1177/0885066618779369
  • Papakrivou E, Manoulakas E, Zakynthinos E, Makris D. Is intra-abdominal hypertension a risk factor for ventilator-associated pneumonia? Ann Transl Med. 2018;6(21):419. doi:10.21037/atm.2018.08.27
  • Kirkpatrick AW, Roberts DJ, De Waele J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–1206. doi:10.1007/s00134-013-2906-z
  • Rouze A, Martin-Loeches I, Nseir S. Airway devices in ventilator-associated pneumonia pathogenesis and prevention. Clin Chest Med. 2018;39(4):775–783. doi:10.1016/j.ccm.2018.08.001
  • Gorrie CL, Mirceta M, Wick RR, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis. 2017;65(2):208–215. doi:10.1093/cid/cix270
  • Qin X, Wu S, Hao M, et al. The colonization of carbapenem-resistant klebsiella pneumoniae: epidemiology, resistance mechanisms, and risk factors in patients admitted to intensive care units in China. J Infect Dis. 2020;221(Supplement_2):S206–S214. doi:10.1093/infdis/jiz622
  • Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev. 2006;19(4):637–657. doi:10.1128/CMR.00051-05
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 29th Ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
  • Hong SS, Kim K, Huh JY, Jung B, Kang MS, Hong SG. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Ann Lab Med. 2012;32(5):359–361.
  • P¨¦rez-P¨¦rez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40(6):2153–2162. doi:10.1128/JCM.40.6.2153-2162.2002
  • Pagani L, Dell’Amico E, Migliavacca R, et al. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae fr om a hospital in northern Italy. J Clin Microbiol. 2003;41(9):4264–4269. doi:10.1128/JCM.41.9.4264-4269.2003
  • Poirel L, H¨¦ritier C, Tol¨¹n V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22. doi:10.1128/AAC.48.1.15-22.2004
  • Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother. 2006;50(8):2872–2874. doi:10.1128/AAC.01647-05
  • Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and cl inical impact. Antimicrob Agents Chemother. 2003;47(8):2385–2392. doi:10.1128/AAC.47.8.2385-2392.2003
  • Wolter DJ, Khalaf N, Robledo IE, et al. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: dissemination of KPC and IMP-18 beta-lactamases. Antimicrob Agents Chemother. 2009;53(4):1660–1664. doi:10.1128/AAC.01172-08
  • Rao K, Seekatz A, Bassis C, Sun Y, Mantlo E, Bachman MA. Enterobacterales infection after intestinal dominance in hospitalized patients. mSphere. 2020;5(4). doi:10.1128/mSphere.00450-20
  • Vornhagen J, Bassis CM, Ramakrishnan S, et al. A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathog. 2021;17(4):e1009537. doi:10.1371/journal.ppat.1009537
  • Christos Doudakmanis RS, Makri A, Loutsou M, et al. Relationship Between Intra-Abdominal pressure and microaspiration of gastric contents in critically ill mechanically ventilated patients. J Crit Care. 2023;74:154220.
  • Yagci G, Zeybek N, Kaymakcioglu N, et al. Increased intra-abdominal pressure causes bacterial translocation in rabbits. J Chin Med Assoc. 2005;68(4):172–177. doi:10.1016/S1726-4901(09)70244-8
  • Ivatury RR, Porter JM, Simon RJ, Islam S, John R, Stahl WM. Intra-abdominal hypertension after life-threatening penetrating abdominal trauma: prophylaxis, incidence, and clinical relevance to gastric mucosal pH and abdominal compartment syndrome. J Trauma. 1998;44(6):1016–21;discussion 1021–3. doi:10.1097/00005373-199806000-00014
  • Malbrain ML, De Laet IE. Intra-abdominal hypertension: evolving concepts. Clin Chest Med. 2009;30(1):45–70. doi:10.1016/j.ccm.2008.09.003
  • Tan D, Zhang Y, Cheng M, et al. Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses. 2019;11(11). doi:10.3390/v11111080