201
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Raman-Based Antimicrobial Susceptibility Testing on Antibiotics of Last Resort

, , , , ORCID Icon, , , & show all
Pages 5485-5500 | Received 29 Jan 2023, Accepted 28 Jun 2023, Published online: 21 Aug 2023

References

  • Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57(13):2857–2876. doi:10.1080/10408398.2015.1077192
  • WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed November 27, 2022.
  • Ezadi F, Ardebili A, Mirnejad R, Kraft CS. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J Clin Microbiol. 2019;57(4):e01390–e01418. doi:10.1128/JCM.01390-18
  • Seifert H, Blondeau J, Dowzicky MJ. In vitro activity of tigecycline and comparators (2014–2016) among key WHO “priority pathogens” and longitudinal assessment (2004–2016) of antimicrobial resistance: a report from the T.E.S.T. study. Int J Antimicrob Agents. 2018;52(4):474–484. doi:10.1016/j.ijantimicag.2018.07.003
  • Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J. β-lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol. 2010;28(12):596–604. doi:10.1016/j.tibtech.2010.09.004
  • Li H, Zhou M, Chen X, et al. Comparative evaluation of seven tigecycline susceptibility testing methods for carbapenem-resistant Enterobacteriaceae. Infect Drug Resist. 2021;14:1511–1516. doi:10.2147/IDR.S289499
  • Chew KL, La MV, Lin RTP, Teo JWP. Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: comparison of sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J Clin Microbiol. 2017;55(9):2609–2616. doi:10.1128/JCM.00268-17
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Wong H, Louie L, Lo RYC, Simor AE. Characterization of Staphylococcus aureus isolates with a partial or complete absence of staphylococcal cassette chromosome elements. J Clin Microbiol. 2010;48(10):3525–3531. doi:10.1128/JCM.00775-10
  • Cerqueira GC, Earl AM, Ernst CM, et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci U S A. 2017;114(5):1135–1140. doi:10.1073/pnas.1616248114
  • Kloss S, Kampe B, Sachse S, et al. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem. 2013;85(20):9610–9616. doi:10.1021/ac401806f
  • Ho CS, Jean N, Hogan CA, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10(1):4927. doi:10.1038/s41467-019-12898-9
  • Kanno N, Kato S, Ohkuma M, Matsui M, Iwasaki W, Shigeto S. Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes. iScience. 2021;24(9):102975. doi:10.1016/j.isci.2021.102975
  • Dina NE, Gherman AMR, Colniță A, Marconi D, Sârbu C. Fuzzy characterization and classification of bacteria species detected at single-cell level by surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119149. doi:10.1016/j.saa.2020.119149
  • Pistiki A, Ramoji A, Ryabchykov O, et al. Biochemical analysis of leukocytes after in vitro and in vivo activation with bacterial and fungal pathogens using Raman spectroscopy. Int J Mol Sci. 2021;22(19):10481. doi:10.3390/ijms221910481
  • Peng MW, Wei XY, Yu Q, Yan P, Chen YP, Guo JS. Identification of ceftazidime interaction with bacteria in wastewater treatment by Raman spectroscopic mapping. RSC Adv. 2019;9(56):32744–32752. doi:10.1039/C9RA06006E
  • Wang Y, Song Y, Tao Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem. 2016;88(19):9443–9450. doi:10.1021/acs.analchem.6b01602
  • Azemtsop Matanfack G, Taubert M, Guo S, et al. Monitoring deuterium uptake in single bacterial cells via two-dimensional Raman correlation spectroscopy. Anal Chem. 2021;93(21):7714–7723. doi:10.1021/acs.analchem.1c01076
  • Berry D, Mader E, Lee TK, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A. 2015;112(2):E194–E203. doi:10.1073/pnas.1420406112
  • Tao Y, Wang Y, Huang S, et al. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy. Anal Chem. 2017;89(7):4108–4115. doi:10.1021/acs.analchem.6b05051
  • Zhang M, Hong W, Abutaleb NS, et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv Sci. 2020;7(19):e2001452. doi:10.1002/advs.202001452
  • Yi X, Song Y, Xu X, et al. Development of a fast Raman-assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples. Anal Chem. 2021;93(12):5098–5106. doi:10.1021/acs.analchem.0c04709
  • Li J, Rayner CR, Nation RL, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50(9):2946–2950. doi:10.1128/AAC.00103-06
  • Jandova J, Hua AB, Fimbres J, Wondrak GT. Deuterium oxide (D2O) induces early stress response gene expression and impairs growth and metastasis of experimental malignant melanoma. Cancers. 2021;13(4):605. doi:10.3390/cancers13040605
  • Srinivas P, Rivard K. Polymyxin resistance in gram-negative pathogens. Curr Infect Dis Rep. 2017;19(11):38. doi:10.1007/s11908-017-0596-3
  • He T, Wang R, Liu D, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol. 2019;4(9):1450–1456. doi:10.1038/s41564-019-0445-2
  • Hammerum AM, Justesen US, Pinholt M, et al. Surveillance of vancomycin-resistant enterococci reveals shift in dominating clones and national spread of a vancomycin-variable vanA Enterococcus faecium ST1421-CT1134 clone, Denmark, 2015 to March 2019. Euro Surveill. 2019;24(34):1900503. doi:10.2807/1560-7917.ES.2019.24.34.1900503
  • Wassilew N, Seth-Smith HM, Rolli E, et al. Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018. Euro Surveill. 2018;23(29):1800351. doi:10.2807/1560-7917.ES.2018.23.29.1800351
  • Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis. 2001;1(5):314–325. doi:10.1016/S1473-3099(01)00145-1
  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nature Rev Microbiol. 2017;15(8):453–464. doi:10.1038/nrmicro.2017.42
  • Dewachter L, Fauvart M, Michiels J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol Cell. 2019;76(2):255–267. doi:10.1016/j.molcel.2019.09.028
  • Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother. 2020;75(2):271–282. doi:10.1093/jac/dkz401
  • Hanson C, Bishop MM, Barney JT, Vargis E. Effect of growth media and phase on Raman spectra and discrimination of mycobacteria. J Biophotonics. 2019;12(11). doi:10.1002/jbio.201900150
  • Babaei S, Haeili M. Evaluating the performance characteristics of different antimicrobial susceptibility testing methodologies for testing susceptibility of gram-negative bacteria to tigecycline. BMC Infect Dis. 2021;21(1):709. doi:10.1186/s12879-021-06338-7