387
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Metabolic Profiles of Clinical Isolates of Drug-Susceptible and Multidrug-Resistant Mycobacterium tuberculosis: A Metabolomics-Based Study

, , , ORCID Icon &
Pages 2667-2680 | Received 04 Feb 2023, Accepted 20 Apr 2023, Published online: 03 May 2023

References

  • Jeremiah C, Petersen E, Nantanda R, et al. The WHO Global Tuberculosis 2021 Report - not so good news and turning the tide back to End TB. Int J Infect Dis. 2022. doi:10.1016/j.ijid.2022.03.011
  • Ledesma JR, Ma J, Vongpradith A; Collaborators, G.B.D.T. Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990-2019: results from the Global Burden of Disease Study 2019. Lancet Infect Dis. 2022;22(2):222–241. doi:10.1016/S1473-3099(21)00449-7
  • World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.
  • Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: a review. Comp Immunol Microbiol Infect Dis. 2021;74:101574. doi:10.1016/j.cimid.2020.101574
  • Judge A, Dodd MS. Metabolism. Essays Biochem. 2020;64(4):607–647. doi:10.1042/EBC20190041
  • Planck KA, Rhee K. Metabolomics of Mycobacterium tuberculosis. Methods Mol Biol. 2021;2314:579–593. doi:10.1007/978-1-0716-1460-0_25
  • Xiao G, Zhang S, Zhang L, et al. Untargeted metabolomics analysis reveals Mycobacterium tuberculosis strain H37Rv specifically induces tryptophan metabolism in human macrophages. BMC Microbiol. 2022;22(1):249. doi:10.1186/s12866-022-02659-y
  • Jiang Q, Qiu Y, Kurland IJ, et al. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. mBio. 2022;13(4):e0127422. doi:10.1128/mbio.01274-22
  • Caleffi-Ferracioli KR, Maltempe FG, Siqueira VL, et al. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis. 2013;93(6):660–663. doi:10.1016/j.tube.2013.09.001
  • Ying R, Huang X, Gao Y, et al. In vitro Synergism of Six Antituberculosis Agents Against Drug-Resistant Mycobacterium tuberculosis Isolated from Retreatment Tuberculosis Patients. Infect Drug Resist. 2021;14:3729–3736. doi:10.2147/IDR.S322563
  • Qin Y, Xu L, Teng Y, et al. Discovery of novel antibacterial agents: recent developments in D-alanyl-D-alanine ligase inhibitors. Chem Biol Drug Des. 2021;98(3):305–322. doi:10.1111/cbdd.13899
  • Yelamanchi SD, Mishra A, Behra SK, et al. Rifampicin-Mediated Metabolic Changes in Mycobacterium tuberculosis. Metabolites. 2022;12(6):493. doi:10.3390/metabo12060493
  • Pederick JL, Thompson AP, Bell SG, et al. d-Alanine-d-alanine ligase as a model for the activation of ATP-grasp enzymes by monovalent cations. J Biol Chem. 2020;295(23):7894–7904. doi:10.1074/jbc.RA120.012936
  • Boudrioua A, Li Y, Hartke A, et al. Opposite effect of vancomycin and D-Cycloserine combination in both vancomycin resistant Staphylococcus aureus and enterococci. FEMS Microbiol Lett. 2020;367(8). doi:10.1093/femsle/fnaa062
  • Zhang S, Oh JH, Alexander LM, et al. d-Alanyl-d-Alanine Ligase as a Broad-Host-Range Counterselection Marker in Vancomycin-Resistant Lactic Acid Bacteria. J Bacteriol. 2018;200(13). doi:10.1128/JB.00607-17
  • Fakhar Z, Naiker S, Alves CN, et al. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn. 2016;34(11):2399–2417. doi:10.1080/07391102.2015.1117397
  • Hrast M, Vehar B, Turk S, et al. Function of the d-Alanine: d-Alanine Ligase Lid Loop: a Molecular Modeling and Bioactivity Study. J Med Chem. 2012;55(15):6849–6856. doi:10.1021/jm3006965
  • Chen Y, Xu Y, Yang S, et al. Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. Microbiologyopen. 2019;8(9):e00819. doi:10.1002/mbo3.819
  • Yang S, Xu Y, Wang Y, et al. The Biological Properties and Potential Interacting Proteins of d-Alanyl-d-alanine Ligase A from Mycobacterium tuberculosis. Molecules. 2018;23(2). doi:10.3390/molecules23020324
  • Shi KX, Wu YK, Tang BK, et al. Housecleaning of pyrimidine nucleotide pool coordinates metabolic adaptation of nongrowing Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8(1):40–44. doi:10.1080/22221751.2018.1559706
  • Villela AD, Sanchez-Quitian ZA, Ducati RG, et al. Pyrimidine salvage pathway in Mycobacterium tuberculosis. Curr Med Chem. 2011;18(9):1286–1298. doi:10.2174/092986711795029555
  • Van Calenbergh S, Pochet S, Munier-Lehmann H. Drug design and identification of potent leads against mycobacterium tuberculosis thymidine monophosphate kinase. Curr Top Med Chem. 2012;12(7):694–705. doi:10.2174/156802612799984580
  • Knejzlik Z, Herkommerova K, Hockova D, et al. Hypoxanthine-Guanine Phosphoribosyltransferase Is Dispensable for Mycobacterium smegmatis Viability. J Bacteriol. 2020;202(5). doi:10.1128/JB.00710-19
  • Parker WB, Long MC. Purine metabolism in Mycobacterium tuberculosis as a target for drug development. Curr Pharm Des. 2007;13(6):599–608. doi:10.2174/138161207780162863
  • Cloete R, Shahbaaz M, Grobbelaar M, et al. In silico repurposing of a Novobiocin derivative for activity against latency associated Mycobacterium tuberculosis drug target nicotinate-nucleotide adenylyl transferase (Rv2421c). PLoS One. 2021;16(11):e0259348. doi:10.1371/journal.pone.0259348
  • Simmons JD, Peterson GJ, Campo M, et al. Nicotinamide Limits Replication of Mycobacterium tuberculosis and Bacille Calmette-Guerin Within Macrophages. J Infect Dis. 2020;221(6):989–999. doi:10.1093/infdis/jiz541
  • Yelamanchi SD, Surolia A. Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival. IUBMB Life. 2021;73(4):643–658. doi:10.1002/iub.2455
  • Tiwari S, van Tonder AJ, Vilcheze C, et al. Arginine-deprivation-induced oxidative damage sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2018;115(39):9779–9784. doi:10.1073/pnas.1808874115
  • Mizrahi V, Warner DF. Death of Mycobacterium tuberculosis by l-arginine starvation. Proc Natl Acad Sci U S A. 2018;115(39):9658–9660. doi:10.1073/pnas.1813587115