250
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Phenotypic and Genetic Analysis of KPC-49, a KPC-2 Variant Conferring Resistance to Ceftazidime–Avibactam and Maintaining Resistance to Imipenem and Meropenem

, , &
Pages 2477-2485 | Received 29 Jan 2023, Accepted 18 Apr 2023, Published online: 27 Apr 2023

References

  • Zhang H, Guo Z, Chai Y, et al. Risk factors for and clinical outcomes of carbapenem-resistant Klebsiella pneumoniae nosocomial infections: a retrospective study in a tertiary hospital in Beijing, China. Infect Drug Resist. 2021;14:1393–1401. doi:10.2147/IDR.S298530
  • Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–1798. doi:10.3201/eid1710.110655
  • Temkin E, Adler A, Lerner A, et al. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci. 2014;1323:22–42. doi:10.1111/nyas.12537
  • Shields RK, Nguyen MH, Chen L, et al. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.00883-17
  • van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant enterobacteriaceae. Clin Infect Dis. 2018;66:163–171. doi:10.1093/cid/cix783
  • Giddins MJ, Macesic N, Annavajhala MK, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018;62. doi:10.1128/AAC.02101-17
  • Gaibani P, Campoli C, Lewis RE, et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother. 2018;73:1525–1529. doi:10.1093/jac/dky082
  • Shields RK, Nguyen MH, Press EG, et al. In vitro selection of meropenem resistance among ceftazidime-avibactam-resistant, meropenem-susceptible Klebsiella pneumoniae isolates with variant KPC-3 carbapenemases. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.00079-17
  • Hemarajata P, Humphries RM. Ceftazidime/avibactam resistance associated with l169p mutation in the omega loop of KPC-2. J Antimicrob Chemother. 2019;74:1241–1243. doi:10.1093/jac/dkz026
  • Zhang P, Shi Q, Hu H, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin Microbiol Infect. 2020;26:121–124. doi:10.1016/j.cmi.2019.08.020
  • Galani I, Antoniadou A, Karaiskos I, et al. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin Microbiol Infect. 2019;25:763–765. doi:10.1016/j.cmi.2019.03.011
  • Compain F, Arthur M. Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 β-lactamase. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.00451-17
  • Shields RK, Nguyen MH, Press EG, et al. Emergence of ceftazidime-avibactam resistance and restoration of carbapenem susceptibility in Klebsiella pneumoniae carbapenemase-producing K pneumoniae: a case report and review of literature. Open Forum Infect Dis. 2017;4:x101. doi:10.1093/ofid/ofx101
  • Nelson K, Hemarajata P, Sun D, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.00989-17
  • Livermore DM, Mushtaq S, Barker K, et al. Characterization of β-lactamase and porin mutants of Enterobacteriaceae selected with ceftaroline + avibactam (nxl104). J Antimicrob Chemother. 2012;67:1354–1358. doi:10.1093/jac/dks079
  • European Committee on Antimicrobial Susceptibility Testing. EUCAST: clinical breakpoints and dosing of antibiotics. EUCAST-Clinical breakpoints-breakpoints and guidance Clinical breakpoints-bacteria; 2022.
  • FDA. Antibacterial susceptibility test interpretive criteria; 2022.
  • CLSI. M100—Performance Standards for Antimicrobial Susceptibility Testing. 32nd. Clinical and Laboratory Standards Institute; 2022.
  • Tsakris A, Poulou A, Pournaras S, et al. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class a KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother. 2010;65:1664–1671. doi:10.1093/jac/dkq210
  • Kingan SB, Urban J, Lambert CC, et al. A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system. Gigascience. 2019;8. doi:10.1093/gigascience/giz122
  • Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi:10.1101/gr.215087.116
  • Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. doi:10.1371/journal.pone.0112963
  • Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics. 2007;23:673–679. doi:10.1093/bioinformatics/btm009
  • Maiden MC, Jansen VRM, Bray JE, et al. Mlst revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11:728–736. doi:10.1038/nrmicro3093
  • Carattoli A, Hasman H. Plasmidfinder and in silico pmlst: identification and typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol. 2020;2075:285–294. doi:10.1007/978-1-4939-9877-7_20
  • Bortolaia V, Kaas RS, Ruppe E, et al. Resfinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491–3500. doi:10.1093/jac/dkaa345
  • Alcock BP, Raphenya AR, Lau T, et al. Card 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi:10.1093/nar/gkz935
  • Alikhan NF, Petty NK, Ben ZN, et al. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402. doi:10.1186/1471-2164-12-402
  • Siguier P, Perochon J, Lestrade L, et al. Isfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–D36. doi:10.1093/nar/gkj014
  • Bertelli C, Laird MR, Williams KP, et al. Islandviewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35. doi:10.1093/nar/gkx343
  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi:10.1093/bioinformatics/btr039
  • Li X, Xie Y, Liu M, et al. Oritfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018;46:W229–W234. doi:10.1093/nar/gky352
  • Hu R, Li Q, Zhang F, et al. Characterisation of bla(NDM-5) and bla(KPC-2) co-occurrence in K64-ST11 carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist. 2021;27:63–66. doi:10.1016/j.jgar.2021.08.009
  • Shi Q, Han R, Guo Y, et al. Multiple novel ceftazidime-avibactam-resistant variants of bla(KPC-2)-positive Klebsiella pneumoniae in two patients. Microbiol Spectr. 2022;10:e171421. doi:10.1128/spectrum.01714-21
  • Jiang Y, Yu D, Wei Z, et al. Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKP048, carrying bla KPC-2, bla DHA-1, qnrB4, and armA. Antimicrob Agents Chemother. 2010;54:3967–3969. doi:10.1128/AAC.00137-10
  • Hernández-García M, Sánchez-López J, Martínez-García L, et al. Emergence of the new KPC-49 variant conferring an esbl phenotype with resistance to ceftazidime-avibactam in the ST131-H30r1 Escherichia coli high-risk clone. Pathogens. 2021;10. doi:10.3390/pathogens10010067
  • Hamzaoui Z, Ocampo-Sosa A, Fernandez MM, et al. Role of association of Ompk35 and Ompk36 alteration and blaESBL and/or blaAMPC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2018;52:898–905. doi:10.1016/j.ijantimicag.2018.03.020
  • Wall ME, Markowitz DA, Rosner JL, et al. Model of transcriptional activation by MarA in Escherichia coli. PLoS Comput Biol. 2009;5:e1000614. doi:10.1371/journal.pcbi.1000614
  • De Majumdar S, Yu J, Fookes M, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 2015;11:e1004627. doi:10.1371/journal.ppat.1004627
  • Pérez A, Poza M, Fernández A, et al. Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother. 2012;56:2084–2090. doi:10.1128/AAC.05509-11
  • Padilla E, Llobet E, Doménech-Sánchez A, et al. Klebsiella pneumoniae AcrAB Efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2010;54:177–183. doi:10.1128/AAC.00715-09
  • Srinivasan VB, Singh BB, Priyadarshi N, et al. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One. 2014;9:e96288. doi:10.1371/journal.pone.0096288
  • Srinivasan VB, Rajamohan G. Kpnef, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013;57:4449–4462. doi:10.1128/AAC.02284-12
  • Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31. doi:10.1128/CMR.00088-17