257
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association of Single-Nucleotide Polymorphisms in the VDR Gene with Tuberculosis and Infection of Beijing Genotype Mycobacterium tuberculosis

, , , ORCID Icon, , , , , , , , , , & show all
Pages 3157-3169 | Received 08 Feb 2023, Accepted 03 May 2023, Published online: 22 May 2023

References

  • WHO. Global tuberculosis report 2022; 2022. Available from: https://www.who.int/publicationsdetail-redirect/9789240061729. Accessed May 8, 2023.
  • Abel L, Fellay J, Haas DW, et al. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. Lancet Infect Dis. 2018;18(3):e64–e75. doi:10.1016/S1473-3099(17)30623-0
  • Abreu R, Giri P, Quinn F. Host-pathogen interaction as a novel target for host-directed therapies in tuberculosis. Front Immunol. 2020;11:1553. doi:10.3389/fimmu.2020.01553
  • Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol. 2013;13(4):280–293. doi:10.1038/nri3421
  • Silva CA, Fernandes DC, Braga ACO, et al. Investigation of genetic susceptibility to Mycobacterium tuberculosis (VDR and IL10 genes) in a population with a high level of substructure in the Brazilian Amazon region. Int J Infect Dis. 2020;98:447–453. doi:10.1016/j.ijid.2020.06.090
  • Medapati RV, Suvvari S, Godi S, et al. NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: a case-control study. BMC Pulm Med. 2017;17(1):89. doi:10.1186/s12890-017-0431-5
  • Thomas L, Sekhar Miraj S, Surulivelrajan M, et al. Influence of single nucleotide polymorphisms on rifampin pharmacokinetics in tuberculosis patients. Antibiotics. 2020;9(6):307. doi:10.3390/antibiotics9060307
  • Sha YX, Zhang X, Zhou HQ, et al. Study of vitamin D receptor gene polymorphisms and susceptibility to tuberculosis in adolescents. J Anhui Med Univ. 2020;55(10):1588–1592.
  • Meng XJ. A Study on the Association of Polymorphisms of the VDR Gene and NRAMP1 Gene with the Susceptibility to Tuberculosis of Xinjiang Uyghurs. Shihezi: Shihezi University; 2009.
  • Li CZ. A Study on the Association of Polymorphisms of the VDR Gene and NRAMP1 Gene with the susceptibility to Tuberculosis of Xinjiang Hazakhs. Shihezi: Shihezi University; 2009.
  • Wu JD. A Study on the Association of Polymorphisms of the VDR Gene and NRAMP1 Gene with the Susceptibility to Tuberculosis of Xinjiang Han. Shihezi: Shihezi University; 2009.
  • Xu X, Shen M. Associations between vitamin D receptor genetic variants and tuberculosis: a meta-analysis. Innate Immun. 2019;25(5):305–313. doi:10.1177/1753425919842643
  • Wang Y, Li HJ. A meta-analysis on associations between vitamin D receptor genetic variants and tuberculosis. Microb Pathog. 2019;130:59–64. doi:10.1016/j.micpath.2019.02.027
  • Pang Y, Zhou Y, Zhao B, et al. Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7:e32976. doi:10.1371/journal.pone.0032976
  • Wan K, Liu J, Hauck Y, et al. Investigation on Mycobacterium tuberculosis diversity in China and the origin of the Beijing clade. PLoS One. 2011;6:e29190. doi:10.1371/journal.pone.0029190
  • Chen H, He L, Huang H, et al. Mycobacterium tuberculosis lineage distribution in Xinjiang and Gansu Provinces, China. Sci Rep. 2017;7:1068. doi:10.1038/s41598-017-00720-9
  • Yuan L, Mi L, Li Y, et al. Genotypic characteristics of Mycobacterium tuberculosis circulating in Xinjiang, China. Infect Dis. 2016;48:108–115. doi:10.3109/23744235.2015.1087649
  • National Health and Family Planning Commission of the People’s Republic of China, WS 288–2017. Diagnosis for Pulmonary Tuberculosis. Beijing: People’s Medical Publishing House; 2017.
  • National Health and Family Planning Commission of the People’s Republic of China, WS 196-2017. Classification of Tuberculosis. Beijing: People’s Medical Publishing House; 2017.
  • Honore S, Vincensini JP, Hocqueloux L, et al. Diagnostic value of a nested polymerase chain reaction assay on peripheral blood mononuclear cells from patients with pulmonary and extra-pulmonary tuberculosis. Int J Tuberc Lung Dis. 2001;5(8):754–762.
  • Warren RM, Victor TC, Streicher EM, et al. Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med. 2004;169(5):610–614. doi:10.1164/rccm.200305-714OC
  • Thakkinstian A, McElduff P, D’Este C, et al. A method for meta-analysis of molecular association studies. Stat Med. 2005;24(9):1291–1306. doi:10.1002/sim.2010
  • Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265. doi:10.1093/bioinformatics/bth457
  • Wang LX, Cheng SM, Chen MT, et al. The fifth national tuberculosis epidemiological survey in 2010. Chin J Antitubercul. 2012;34:485–508.
  • Uren C, Hoal EG, Möller M. Mycobacterium tuberculosis complex and human co-adaptation: a two-way street complicating host susceptibility to TB. Hum Mol Genet. 2021;30(R1):R146–R153. doi:10.1093/hmg/ddaa254
  • Müller SJ, Schurz H, Tromp G, et al. A multi-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort. Genomics. 2021;113(4):1802–1815. doi:10.1016/j.ygeno.2021.04.024
  • McHenry ML, Bartlett J, Igo RP, et al. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: evidence for coevolution? PLoS Genet. 2020;16:e1008728. doi:10.1371/journal.pgen.1008728
  • Caws M, Thwaites G, Dunstan S, et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 2008;4:e1000034. doi:10.1371/journal.ppat.1000034
  • van Crevel R, Parwati I, Sahiratmadja E, et al. Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis. 2009;200(11):1671–1674. doi:10.1086/648477
  • Omae Y, Toyo-Oka L, Yanai H, et al. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet. 2017;62(12):1015–1022. doi:10.1038/jhg.2017.82
  • Thye T, Niemann S, Walter K, et al. Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One. 2011;6(6):e20908. doi:10.1371/journal.pone.0020908
  • Songane M, Kleinnijenhuis J, Alisjahbana B, et al. Polymorphisms in autophagy genes and susceptibility to tuberculosis. PLoS One. 2012;7(8):e41618. doi:10.1371/journal.pone.0041618
  • Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis. 1978;117(4):621–624. doi:10.1164/arrd.1978.117.4.621
  • Sadykov M, Azizan A, Kozhamkulov U, et al. Association of genetic variations in the vitamin D pathway with susceptibility to tuberculosis in Kazakhstan. Mol Biol Rep. 2020;47(3):1659–1666. doi:10.1007/s11033-020-05255-3
  • Wu F, Zhang W, Zhang L, et al. NRAMP1, VDR, HLA-DRB1, and HLA-DQB1 gene polymorphisms in susceptibility to tuberculosis among the Chinese Kazakh population: a case-control study. Biomed Res Int. 2013;2013:484535. doi:10.1155/2013/484535
  • Rook GA, Steele J, Fraher L, et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology. 1986;57(1):159–163.
  • Sutaria N, Liu CT, Chen TC. Vitamin D status, receptor gene polymorphisms, and supplementation on tuberculosis: a systematic review of case-control studies and randomized controlled trials. J Clin Transl Endocrinol. 2014;1(4):151–160. doi:10.1016/j.jcte.2014.08.001
  • Selvaraj P, Harishankar M, Afsal K. Vitamin D: immuno-modulation and tuberculosis treatment. Can J Physiol Pharmacol. 2015;93(5):377–384. doi:10.1139/cjpp-2014-0386
  • Panwar A, Garg RK, Malhotra HS, et al. 25-hydroxy vitamin D, vitamin D receptor and toll-like receptor 2 polymorphisms in spinal tuberculosis: a case-control study. Medicine. 2016;95(17):e3418. doi:10.1097/MD.0000000000003418
  • Sharma PR, Singh S, Jena M, et al. Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India. Infect Genet Evol. 2011;11(6):1456–1461. doi:10.1016/j.meegid.2011.05.019
  • Ganmaa D, Khudyakov P, Buyanjargal U, et al. Prevalence and determinants of QuantiFERON-diagnosed tuberculosis infection in 9810 Mongolian schoolchildren. Clin Infect Dis. 2019;69(5):813–819. doi:10.1093/cid/ciy975
  • Ruiz-Tagle C, Romero F, Naves R, et al. Vitamin D and cathelicidin levels and susceptibility to Mycobacterium tuberculosis infection acquisition in household contacts. Enferm Infecc Microbiol Clin. 2023:S2529-993X(23)00013–8. doi:10.1016/j.eimce.2022.04.013
  • Maruthai K, Sankar S, Subramanian M. Methylation status of VDR gene and its association with vitamin D status and VDR gene expression in pediatric tuberculosis disease. Immunol Invest. 2022;51(1):73–87. doi:10.1080/08820139.2020.1810702
  • Chen H, He L, Cai C, et al. Characteristics of distribution of Mycobacterium tuberculosis lineages in China. Sci China Life Sci. 2018;61(6):651–659. doi:10.1007/s11427-017-9243-0
  • Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1176–1182. doi:10.1038/ng.2744
  • Gagneux S, DeRiemer K, Van T, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8):2869–2873. doi:10.1073/pnas.0511240103
  • Glynn JR, Whiteley J, Bifani PJ, et al. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8(8):843–849. doi:10.3201/eid0805.020002
  • Karmakar M, Trauer JM, Ascher DB, et al. Hyper transmission of Beijing lineage Mycobacterium tuberculosis: systematic review and meta-analysis. J Infect. 2019;79(6):572–581. doi:10.1016/j.jinf.2019.09.016