355
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synthesis, Anti-Bacterial and Molecular Docking Studies of Arylated Butyl 2-Bromoisonicotinate Against Clinical Isolates of ESBL-Producing Escherichia coli ST405 and Methicillin-Resistant Staphylococcus aureus

, , ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5295-5308 | Received 12 Apr 2023, Accepted 12 Jul 2023, Published online: 14 Aug 2023

References

  • Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089–1093. doi:10.1126/science.1176667
  • Smith RD, Coast J. Antimicrobial resistance: a global response. Bull World Health Organ. 2002;80:126–133.
  • Usman Qamar M, S Lopes B, Hassan B, et al. The present danger of New Delhi metallo-β-lactamase: a threat to public health. Future Microbiol. 2020;15:1759–1778. doi:10.2217/fmb-2020-0069
  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658. doi:10.2147/IDR.S173867
  • Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO global priority pathogens list: a bibliometric analysis of medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med J. 2019;34(3):184–193. doi:10.5001/omj.2019.37
  • Ejaz H, Younas S, Qamar MU, et al. Molecular epidemiology of extensively drug-resistant mcr encoded colistin-resistant bacterial strains co-expressing multifarious β-lactamases. Antibiotics. 2021;10(4):467. doi:10.3390/antibiotics10040467
  • Liu W-T, Chen E-Z, Yang L, et al. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: a comprehensive review. Microb Pathog. 2021;156:104915. doi:10.1016/j.micpath.2021.104915
  • Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev. 2005;57(10):1486–1513. doi:10.1016/j.addr.2005.04.004
  • Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng R Rep. 2007;57(1–6):28–64. doi:10.1016/j.mser.2007.03.002
  • Phillips DJ, Harrison J, Richards S-J, et al. Evaluation of the antimicrobial activity of cationic polymers against mycobacteria: toward antitubercular macromolecules. Biomacromolecules. 2017;18(5):1592–1599. doi:10.1021/acs.biomac.7b00210
  • Tuchilus CG, Nichifor M, Mocanu G, Stanciu MC. Antimicrobial activity of chemically modified dextran derivatives. Carbohydr Polym. 2017;161:181–186. doi:10.1016/j.carbpol.2017.01.006
  • Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010;210(2):353–361. doi:10.1016/j.atherosclerosis.2009.12.023
  • Eldehna WM, Fares M, Abdel-Aziz MM, Abdel-Aziz HA. Design, synthesis and antitubercular activity of certain nicotinic acid hydrazides. Molecules. 2015;20(5):8800–8815. doi:10.3390/molecules20058800
  • Dhalla AK, Santikul M, Smith M, Wong M-Y, Shryock JC, Belardinelli L. Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid. J Pharmacol Exp Ther. 2007;321(1):327–333. doi:10.1124/jpet.106.114421
  • Narang R, Narasimhan B, Sharma S, et al. Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med Chem Res. 2012;21(8):1557–1576. doi:10.1007/s00044-011-9664-7
  • Blangetti M, Rosso H, Prandi C, Deagostino A, Venturello P. Suzuki-Miyaura cross-coupling in acylation reactions, scope and recent developments. Molecules. 2013;18(1):1188–1213. doi:10.3390/molecules18011188
  • Han F-S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem Soc Rev. 2013;42(12):5270–5298. doi:10.1039/c3cs35521g
  • Billingsley K, Buchwald SL. Highly efficient monophosphine-based catalyst for the palladium-catalyzed Suzuki−Miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. J Am Chem Soc. 2007;129(11):3358–3366. doi:10.1021/ja068577p
  • Deshmukh MB, Patil SH, Shripanavar CS. Synthesis and insecticidal activity of some nicotinic acid derivatives. J Chem Pharm Res. 2012;4(1):326–332.
  • Kanwal I, Rasool N, Zaidi SHM, et al. Synthesis of functionalized thiophene based pyrazole amides via various catalytic approaches: structural features through computational applications and nonlinear optical properties. Molecules. 2022;27(2):360. doi:10.3390/molecules27020360
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Clinical and Laboratory Standards Institute; 2020.
  • Mills N. ChemDraw Ultra 10.0 Cambridgesoft, 100 CambridgePark Drive, Cambridge, MA 02140. Commercial Price: 1910fordownload, 2150 for CD-ROM; Academic Price: 710fordownload, 800 for CD-ROM. ACS Publications; 2006.
  • Hwang SB, Lee CJ, Lee S, et al. PMFF: development of a physics-based molecular force field for protein simulation and ligand docking. J Phys Chem B. 2020;124(6):974–989. doi:10.1021/acs.jpcb.9b10339
  • Taylor JD, Zhou Y, Salgado PS, et al. Atomic resolution insights into curli fiber biogenesis. Structure. 2011;19(9):1307–1316. doi:10.1016/j.str.2011.05.015
  • Li Y, Liu Z, Li J, et al. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set. J Chem Inf Model. 2014;54(6):1700–1716. doi:10.1021/ci500080q
  • Malik A, Rasool N, Kanwal I, et al. Suzuki–Miyaura reactions of (4-bromophenyl)-4, 6-dichloropyrimidine through commercially available palladium catalyst: synthesis, optimization and their structural aspects identification through computational studies. Processes. 2020;8(11):1342. doi:10.3390/pr8111342
  • Imran HM, Rasool N, Kanwal I, et al. Synthesis of halogenated [1, 1′-biphenyl]-4-yl benzoate and [1, 1′: 3′, 1 ″-terphenyl]-4′-yl benzoate by palladium catalyzed cascade C–C coupling and structural analysis through computational approach. J Mol Struct. 2020;1222:128839. doi:10.1016/j.molstruc.2020.128839
  • Cooper TW, Campbell IB, Macdonald SJ. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew Chem Int Ed. 2010;49(44):8082–8091. doi:10.1002/anie.201002238
  • McConnell CR, Liu S-Y. Late-stage functionalization of BN-heterocycles. Chem Soc Rev. 2019;48(13):3436–3453. doi:10.1039/C9CS00218A
  • Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical solvent‐free Suzuki–Miyaura cross‐coupling of amides via highly chemoselective N− C cleavage. Angew Chem Int Ed. 2022;61(7):e202114146.
  • Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Suzuki–Miyaura cross-coupling of esters by selective O–C (O) cleavage mediated by air-and moisture-stable [Pd (NHC)(μ-Cl) Cl] 2 precatalysts: catalyst evaluation and mechanism. Catal Sci Technol. 2021;11(9):3189–3197. doi:10.1039/D1CY00312G
  • Siddiqa A, Zubair M, Bilal M, et al. Synthesis of functionalized N-(4-Bromophenyl) furan-2-carboxamides via Suzuki-Miyaura cross-coupling: anti-bacterial activities against clinically isolated drug Resistant A. baumannii, K. pneumoniae, E. cloacae and MRSA and its validation via a computational approach. Pharmaceuticals. 2022;15(7):841. doi:10.3390/ph15070841
  • Arshad M, Rasool N, Qamar MU, Shah SAA, Zakaria ZA. Facile synthesis of functionalized phenoxy quinolines: antibacterial activities against ESBL producing Escherichia coli and MRSA, docking studies, and structural features determination through computational approach. Molecules. 2022;27(12):3732. doi:10.3390/molecules27123732
  • Mujahid A, Rasool N, Qamar MU, et al. Arylation of halogenated thiophene carboxylate via Suzuki–Miyaura reaction: anti-bacterial study against clinically isolated extensively drug resistant Escherichia coli sequence type 405 and computational investigation. Arab J Chem. 2022;15(3):103662. doi:10.1016/j.arabjc.2021.103662
  • Ahmad G, Rasool N, Qamar MU, et al. Facile synthesis of 4-aryl-N-(5-methyl-1H-pyrazol-3-yl) benzamides via Suzuki Miyaura reaction: antibacterial activity against clinically isolated NDM-1-positive bacteria and their docking studies. Arab J Chem. 2021;14(8):103270. doi:10.1016/j.arabjc.2021.103270
  • Ejaz S, Zubair M, Rasool N, et al. N‐([1, 1ʹ‐biaryl]‐4‐yl)‐1‐naphthamide‐based scaffolds synthesis, their cheminformatics analyses, and screening as bacterial biofilm inhibitor. J Basic Microbiol. 2022;62(9):1143–1155. doi:10.1002/jobm.202100288
  • Ahmad G, Khalid A, Qamar MU, et al. Antibacterial efficacy of N-(4-methylpyridin-2-yl) thiophene-2-carboxamide analogues against extended-spectrum-β-lactamase producing clinical strain of Escherichia coli ST 131. Molecules. 2023;28(7):3118. doi:10.3390/molecules28073118
  • Morjan RY, Mkadmh AM, Beadham I, et al. Antibacterial activities of novel nicotinic acid hydrazides and their conversion into N-acetyl-1, 3, 4-oxadiazoles. Bioorg Med Chem Lett. 2014;24(24):5796–5800. doi:10.1016/j.bmcl.2014.10.029
  • Ashma A, Yahya S, Subramani A, et al. Synthesis of new nicotinic acid hydrazide metal complexes: potential anti-cancer drug, supramolecular architecture, antibacterial studies and catalytic properties. J Mol Struct. 2022;1250:131860. doi:10.1016/j.molstruc.2021.131860
  • Osigbemhe IG, Louis H, Khan EM, et al. Antibacterial potential of 2-(-(2-Hydroxyphenyl)-methylidene)-amino) nicotinic acid: experimental, DFT studies, and molecular docking approach. Appl Biochem Biotechnol. 2022;194(12):5680–5701. doi:10.1007/s12010-022-04054-9
  • Asif M. Antimicrobial potential of nicotinic acid derivatives against various pathogenic microbes. Eur Rev Chem Res. 2014;1(1):10–21. doi:10.13187/ercr.2014.1.10