332
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Non-Typhoidal Salmonella Infections Among Children in Fuzhou, Fujian, China: A 10-Year Retrospective Review from 2012 to 2021

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2737-2749 | Received 23 Feb 2023, Accepted 22 Apr 2023, Published online: 06 May 2023

References

  • Seif Y, Kavvas E, Lachance JC, et al. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat Commun. 2018;9(1):3771. doi:10.1038/s41467-018-06112-5
  • Majowicz SE, Musto J, Scallan E, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–889. doi:10.1086/650733
  • Zhang J, Wei L, Kelly P, et al. Detection of Salmonella spp. using a generic and differential FRET-PCR. PLoS One. 2013;8(10):e76053. doi:10.1371/journal.pone.0076053
  • Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, et al. Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res Microbiol. 2014;165(7):526–530. doi:10.1016/j.resmic.2014.07.004
  • Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serotypes differ. Front Microbiol. 2014;5:391. doi:10.3389/fmicb.2014.00391
  • Scallan E, Mahon BE, Hoekstra RM, Griffin PM. Estimates of illnesses, hospitalizations and deaths caused by major bacterial enteric pathogens in young children in the United States. Pediatr Infect Dis J. 2013;32(3):217–221. doi:10.1097/INF.0b013e31827ca763
  • Su LH, Chiu CH. Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med J. 2007;30(3):210–219.
  • Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis. 2011;17(1):7–15. doi:10.3201/eid1701.P11101
  • Magwedere K, Rauff D, De Klerk G, Keddy KH, Dziva F. Incidence of nontyphoidal Salmonella in food-producing animals, animal feed, and the associated environment in South Africa, 2012–2014. Clin Infect Dis. 2015;61(Suppl 4):S283–S289. doi:10.1093/cid/civ663
  • Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD, Swerdlow DL. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes, 1996–2011. PLoS One. 2015;10(12):e0145416. doi:10.1371/journal.pone.0145416
  • Ford L, Glass K, Veitch M, et al. Increasing incidence of Salmonella in Australia, 2000–2013. PLoS One. 2016;11(10):e0163989. doi:10.1371/journal.pone.0163989
  • Centers for Disease Control and Prevention. Vital signs: incidence and trends of infection with pathogens transmitted commonly through food--foodborne diseases active surveillance network, 10 US sites, 1996–2010. MMWR Morb Mortal Wkly Rep. 2011;60(22):749–755.
  • Maia DSV, Haubert L, Würfel SFR, et al. Listeria monocytogenes in sliced cheese and ham from retail markets in southern Brazil. FEMS Microbiol Lett. 2019;366(22). doi:10.1093/femsle/fnz249
  • Wu LJ, Luo Y, Shi GL, Li ZY. Prevalence, clinical characteristics and changes of antibiotic resistance in children with nontyphoidal Salmonella infections from 2009–2018 in Chongqing, China. Infect Drug Resist. 2021;14:1403–1413. doi:10.2147/IDR.S301318
  • Neuert S, Nair S, Day MR, et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front Microbiol. 2018;9:592. doi:10.3389/fmicb.2018.00592
  • Kuang D, Zhang J, Xu X, et al. Emerging high-level ciprofloxacin resistance and molecular basis of resistance in Salmonella enterica from humans, food and animals. Int J Food Microbiol. 2018;280:1–9. doi:10.1016/j.ijfoodmicro.2018.05.001
  • Hong YP, Wang YW, Huang IH, et al. Genetic relationships among multidrug-resistant Salmonella enterica Serovar Typhimurium strains from humans and animals. Antimicrob Agents Chemother. 2018;62(5). doi:10.1128/AAC.00213-18
  • Russini V, Corradini C, Rasile E, et al. A familiar outbreak of monophasic Salmonella serovar Typhimurium (ST34) involving three dogs and their owner’s children. Pathogens. 2022;11(12):12. doi:10.3390/pathogens11121500
  • Bai L, Wang J, Liu LS, et al. 单相鼠伤寒沙门菌污染巧克力产品所致多国暴发事件 对我国食源性致病菌污染风险管理的启示 [Implications for risk management of foodborne pathogens in China from the outbreak of monophasic salmonella enterica serovar Typhimurium contaminated chocolate products]. Zhonghua Yu Fang Yi Xue Za Zhi. 2022;56(11):1648–1656. Chinese. doi:10.3760/cma.j.cn112150-20220712-00711
  • Laidlow TA, Stafford R, Jennison AV, et al. A multi-jurisdictional outbreak of Salmonella Typhimurium infections linked to backyard poultry-Australia, 2020. Zoonoses Public Health. 2022;69(7):835–842. doi:10.1111/zph.12973
  • Chanamé Pinedo L, Mughini-Gras L, Franz E, Hald T, Pires SM. Sources and trends of human salmonellosis in Europe, 2015–2019: an analysis of outbreak data. Int J Food Microbiol. 2022;379:109850. doi:10.1016/j.ijfoodmicro.2022.109850
  • Ke Y, Lu W, Liu W, Zhu P, Chen Q, Zhu Z. Non-typhoidal Salmonella infections among children in a tertiary hospital in Ningbo, Zhejiang, China, 2012–2019. PLoS Negl Trop Dis. 2020;14(10):e0008732. doi:10.1371/journal.pntd.0008732
  • Jones TF, Ingram LA, Cieslak PR, et al. Salmonellosis outcomes differ substantially by serotype. J Infect Dis. 2008;198(1):109–114. doi:10.1086/588823
  • Gilchrist JJ, MacLennan CA, Hill AV. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol. 2015;15(7):452–463. doi:10.1038/nri3858
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Institute. CaLS. Performance standards for antimicrobial susceptibility testing[s]. M100-S31 Wayne, PA: CLSI; 2021.
  • Lake IR. Food-borne disease and climate change in the United Kingdom. Environ Health. 2017;16(Suppl 1):117. doi:10.1186/s12940-017-0327-0
  • Naumova EN, Jagai JS, Matyas B, DeMaria A Jr, MacNeill IB, Griffiths JK. Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiol Infect. 2007;135(2):281–292. doi:10.1017/S0950268806006698
  • Yue M, Li X, Liu D, Hu X. Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. J Clin Lab Anal. 2020;34(12):e23525. doi:10.1002/jcla.23525
  • Zhang SX, Zhou YM, Tian LG, et al. Antibiotic resistance and molecular characterization of diarrheagenic Escherichia coli and non-typhoidal Salmonella strains isolated from infections in Southwest China. Infect Dis Poverty. 2018;7(1):53. doi:10.1186/s40249-018-0427-2
  • Li Y, Xie X, Xu X, et al. Nontyphoidal salmonella infection in children with acute gastroenteritis: prevalence, serotypes, and antimicrobial resistance in Shanghai, China. Foodborne Pathog Dis. 2014;11(3):200–206. doi:10.1089/fpd.2013.1629
  • Hendriksen RS, Vieira AR, Karlsmose S, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8(8):887–900. doi:10.1089/fpd.2010.0787
  • OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet network, 2011. Commun Dis Intell Q Rep. 2015;39(2):E236–E264.
  • Authority EF. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017;15(12):e05077. doi:10.2903/j.efsa.2017.5077
  • CfDCaPC. National Enteric Disease Surveillance: Salmonella Annual Report, 2016. Atlanta, GA: Centers for Disease Control and Prevention; 2016.
  • Hendriksen RS, Bangtrakulnonth A, Pulsrikarn C, et al. Risk factors and epidemiology of the ten most common Salmonella serotypes from patients in Thailand: 2002–2007. Foodborne Pathog Dis. 2009;6(8):1009–1019. doi:10.1089/fpd.2008.0245
  • OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet network, 2010. Commun Dis Intell Q Rep. 2012;36(3):E213–E241.
  • Waltenburg MA, Perez A, Salah Z, et al. Multistate reptile- and amphibian-associated salmonellosis outbreaks in humans, United States, 2009–2018. Zoonoses Public Health. 2022;69(8):925–937. doi:10.1111/zph.12990
  • Yue M, Liu D, Li X, et al. Epidemiology, serotype and resistance of Salmonella isolates from a children’s hospital in Hangzhou, Zhejiang, China, 2006–2021. Infect Drug Resist. 2022;15:4735–4748. doi:10.2147/IDR.S374658
  • Weng R, Gu Y, Zhang W, et al. Whole-genome sequencing provides insight into antimicrobial resistance and molecular characteristics of Salmonella from livestock meat and diarrhea patient in Hanzhong, China. Front Microbiol. 2022;13:899024. doi:10.3389/fmicb.2022.899024
  • Li C, Gu X, Zhang L, et al. The occurrence and genomic characteristics of mcr-1-harboring Salmonella from retail meats and eggs in Qingdao, China. Foods. 2022;11(23):3854.
  • He Y, Wang J, Zhang R, et al. Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Front Public Health. 2023;11:1127925. doi:10.3389/fpubh.2023.1127925
  • Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev. 2015;28(4):901–937. doi:10.1128/CMR.00002-15
  • Galán JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol. 2021;19(11):716–725. doi:10.1038/s41579-021-00561-4
  • Aviv G, Cornelius A, Davidovich M, et al. Differences in the expression of SPI-1 genes pathogenicity and epidemiology between the emerging Salmonella enterica serovar infantis and the model Salmonella enterica serovar Typhimurium. J Infect Dis. 2019;220(6):1071–1081. doi:10.1093/infdis/jiz235
  • Shen H, Chen H, Ou Y, et al. Prevalence, serotypes, and antimicrobial resistance of Salmonella isolates from patients with diarrhea in Shenzhen, China. BMC Microbiol. 2020;20(1):197. doi:10.1186/s12866-020-01886-5
  • Wei Z, Xu X, Yan M, et al. Salmonella Typhimurium and Salmonella enteritidis infections in sporadic diarrhea in children: source tracing and resistance to third-generation cephalosporins and ciprofloxacin. Foodborne Pathog Dis. 2019;16(4):244–255. doi:10.1089/fpd.2018.2557
  • Fupin HU, Guo Y, Zhu D, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021. Chin J Infect Chemother. 2022;22(5)::521–529.
  • A.A.O. Pediatrics. Pickering, red book: 2012 report of the committee on infectious diseases. J Clin Neurophysiol. 2012;11:128–132.
  • World Health Organization. WHO guidelines approved by the guidelines review committee. In: WHO Recommendations on the Management of Diarrhoea and Pneumonia in HIV-Infected Infants and Children: Integrated Management of Childhood Illness (IMCI). Geneva: Copyright © World Health Organization 2010; 2010.
  • Ke B, Sun J, He D, Li X, Liang Z, Ke CW. Serovar distribution, antimicrobial resistance profiles, and PFGE typing of Salmonella enterica strains isolated from 2007–2012 in Guangdong, China. BMC Infect Dis. 2014;14:338. doi:10.1186/1471-2334-14-338
  • Sun RY, Fang LX, Ke BX, et al. Carriage and transmission of mcr-1 in Salmonella typhimurium and its monophasic 1,4,[5],12: i:-variants from diarrheal outpatients: a 10-year genomic epidemiology in Guangdong, Southern China. Microbiol Spectr. 2023:e0311922. doi:10.1128/spectrum.03119-22
  • Wong MH, Yan M, Chan EW, Liu LZ, Kan B, Chen S. Expansion of Salmonella enterica serovar typhimurium ST34 clone carrying multiple resistance determinants in China. Antimicrob Agents Chemother. 2013;57(9):4599–4601. doi:10.1128/AAC.01174-13