370
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Profile and Frequency of Mutations Conferring Drug-Resistant Tuberculosis in the Central, Southeastern and Eastern Ethiopia

, ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 2953-2961 | Received 01 Mar 2023, Accepted 05 May 2023, Published online: 12 May 2023

References

  • World Health Organization. Global Tuberculosis Report 2021. World Health Organization; 2021. Available from: https://apps.who.int/iris/handle/10665/346387. Accessed May 18, 2022.
  • Federal Ministry of Health of Ethiopia. Guidelines on Programmatic Management of Drug Resistance TB in Ethiopia. 2nd ed. Federal Ministry of Health of Ethiopia; 2014.
  • World Health Organization. Global Tuberculosis Report 2020. World Health Organization; 2020. Available from: https://apps.who.int/iris/handle/10665/336069. Accessed November 19, 2022.
  • Jacobson KR, Theron D, Kendall EA, et al. Implementation of GENOTYPE MTBDRplus reduces time to multidrug-resistant tuberculosis therapy initiation in South Africa. Clin Infect Dis. 2013;56(4):503–508. doi:10.1093/cid/cis920
  • World Health Organization. The Use of Molecular Line Probe Assay for the Detection of Resistance to Isoniazid and Rifampicin: Policy Update. World Health Organization; 2016. Available from: https://apps.who.int/iris/handle/10665/250586. Accessed November 22, 2022.
  • World Health Organization. Line Probe Assays for Detection of Drug-Resistant Tuberculosis: Interpretation and Reporting Manual for Laboratory Staff and Clinicians. World Health Organization; 2022. Available from: https://apps.who.int/iris/handle/10665/354240. Accessed November 22, 2022.
  • Li G, Guo Q, Liu H, et al. Detection of resistance to fluoroquinolones and second-line injectable drugs among mycobacterium tuberculosis by a reverse dot blot hybridization assay. Infect Drug Resist. 2020;13:4091–4104. doi:10.2147/IDR.S270209
  • World Health Organization. The Use of Molecular Line Probe Assays for the Detection of Resistance to Second-Line Anti-Tuberculosis Drugs: Policy Guidance. World Health Organization; 2016. Available from: https://apps.who.int/iris/handle/10665/246131. Accessed November 22, 2022.
  • Federal Ministry of Health of Ethiopia. Guideline for the program and clinical management of drug resistant tuberculosis first; 2011.
  • World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance. World Health Organization; 2021. Available from: https://apps.who.int/iris/handle/10665/341981. Accessed November 19, 2022.
  • Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55(5):2032–2041. doi:10.1128/AAC.01550-10
  • Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One. 2015;10(3):e0119628. doi:10.1371/journal.pone.0119628
  • Shen GH, Chen CH, Hung CH, et al. Combining the Capilia TB assay with smear morphology for the identification of Mycobacterium tuberculosis complex. Int J Tuberc Lung Dis. 2009;13(3):371–376.
  • HAIN Lifescience. GenoType MTBDRplus v.2.0, Molecular genetic assay for identification of the M. tuberculosis complex and its resistance to rifampicin and isoniazid from clinical specimens and cultivated samples; 2015.
  • HAIN Lifescience. GenoType MTBDRsl VER 2.0, Molecular Genetic Assay for Identification of the M. tuberculosis Complex and its Resistance to Fluoroquinolones and Aminoglycosides/Cyclic Peptides from Sputum Specimens or Cultivated Samples; 2017.
  • Hirani N, Joshi A, Anand S, et al. Detection of a novel mutation in the rpoB gene in a multidrug resistant Mycobacterium tuberculosis isolate using whole genome next generation sequencing. J Glob Antimicrob Resist. 2020;22:270–274. doi:10.1016/j.jgar.2020.03.004
  • Brhane M, Kebede A, Petros Y. Molecular detection of multidrug-resistant tuberculosis among smear-positive pulmonary tuberculosis patients in Jigjiga town, Ethiopia. Infect Drug Resist. 2017;10:75–83. doi:10.2147/IDR.S127903
  • Tessema B, Beer J, Emmrich F, Sack U, Rodloff AC. Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among Mycobacterium tuberculosis isolates from Ethiopia. BMC Infect Dis. 2012;12(1):37. doi:10.1186/1471-2334-12-37
  • Reta MA, Alemnew B, Abate BB, Fourie PB. Prevalence of drug resistance-conferring mutations associated with isoniazid- and rifampicin-resistant Mycobacterium tuberculosis in Ethiopia: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2021;26:207–218. doi:10.1016/j.jgar.2021.06.009
  • Damena D, Tolosa S, Hailemariam M, et al. Genetic diversity and drug susceptibility profiles of Mycobacterium tuberculosis obtained from Saint Peter’s TB specialized Hospital, Ethiopia. PLoS One. 2019;14(6):e0218545. doi:10.1371/journal.pone.0218545
  • Tadesse M, Abebe G, Bekele A, et al. The predominance of Ethiopian specific Mycobacterium tuberculosis families and minimal contribution of Mycobacterium bovis in tuberculous lymphadenitis patients in Southwest Ethiopia. Infect Genet Evol. 2017;55:251–259. doi:10.1016/j.meegid.2017.09.016
  • Welekidan LN, Skjerve E, Dejene TA, et al. Frequency and patterns of first- and second-line drug resistance-conferring mutations in Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in a cross-sectional study in Tigray Region, Ethiopia. J Glob Antimicrob Resist. 2021;24:6–13. doi:10.1016/j.jgar.2020.11.017
  • Elbir H, Ibrahim NY. Frequency of mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis clinical isolates from Sudan. J Infect Dev Ctries. 2014;8(06):796–798. doi:10.3855/jidc.4496
  • Maurya A, Singh A, Kant S, et al. Use of GenoType® MTBDRplus assay to assess drug resistance and mutation patterns of multidrug-resistant tuberculosis isolates in northern India. Indian J Med Microbiol. 2013;31(3):230–236. doi:10.4103/0255-0857.115625
  • Hamed Z, Mohajeri P, Farahani A, et al. The frequency of point mutations associated with resistance to isoniazid and rifampin among clinical isolates of multidrug-resistant Mycobacterium tuberculosis in the west of Iran. Gene Rep. 2021;22:100981. doi:10.1016/j.genrep.2020.100981
  • Farooqi JQ, Khan E, Alam SMZ, Ali A, Hasan Z. Line probe assay for detection of rifampicin and isoniazid resistant tuberculosis in Pakistan. J Pak Med Assoc. 2012;62:767.
  • Jian J, Yang X, Yang J, Chen L. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist. 2018;11:1627–1634. doi:10.2147/IDR.S176609
  • Alvarez-Uria G, Reddy R. Differences in rpoB, katG and inhA mutations between new and previously treated tuberculosis cases using the GenoType MTBDR plus assay. Infect Genet Evol. 2018;59:48–50. doi:10.1016/j.meegid.2018.01.022
  • Rando-Segura A, Aznar ML, Moreno MM, et al. Molecular characterization of rpoB gene mutations in isolates from tuberculosis patients in Cubal, Republic of Angola. BMC Infect Dis. 2021;21. doi:10.1186/s12879-021-06763-8
  • Franco-Sotomayor G, Garzon-Chavez D, Leon-Benitez M, de Waard JH, Garcia-Bereguiain MA, First A. Insight into the katG and rpoB gene mutations of multidrug-resistant Mycobacterium tuberculosis strains from Ecuador. Microb Drug Resist. 2019;25(4):524–527. doi:10.1089/mdr.2018.0203
  • Abate D, Tedla Y, Meressa D, Ameni G. Isoniazid and rifampicin resistance mutations and their effect on second-line anti-tuberculosis treatment. Int J Tuberc Lung Dis. 2014;18(8):946–951. doi:10.5588/ijtld.13.0926
  • Tadesse M, Aragaw D, Dimah B, et al. Drug resistance-conferring mutations in Mycobacterium tuberculosis from pulmonary tuberculosis patients in Southwest Ethiopia. Int J Mycobacteriol. 2016;5(2):185–191. doi:10.1016/j.ijmyco.2016.02.009
  • Seifert M, Georghiou SB, Catanzaro D, et al. MTBDR plus and MTBDR sl assays: absence of wild-type probe hybridization and implications for detection of drug-resistant tuberculosis. J Clin Microbiol. 2016;54(4):912–918. doi:10.1128/JCM.02505-15
  • Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis off J Int Union Tuberc Lung Dis. 2009;13(11):1320–1330.
  • Bostanabad S, Titov L, Bahrmand A, Nojoumi S. Detection of mutation in isoniazid-resistant mycobacterium tuberculosis isolates from tuberculosis patients in Belarus. Indian J Med Microbiol. 2008;26(2):143–147. doi:10.1016/S0255-0857(21)01930-7
  • van Soolingen D, de Haas PEW, van Doorn HR, Kuijper E, Rinder H, Borgdorff MW. Mutations at amino acid position 315 of the katG Gene are associated with high‐level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in The Netherlands. J Infect Dis. 2000;182(6):1788–1790. doi:10.1086/317598
  • Biadglegne F, Tessema B, Rodloff AC, Sack U. Magnitude of gene mutations conferring drug resistance in Mycobacterium tuberculosis isolates from lymph node aspirates in Ethiopia. Int J Med Sci. 2013;10(11):1589–1594. doi:10.7150/ijms.6806
  • Tilahun M, Shimelis E, Wogayehu T, et al. Molecular detection of multidrug resistance pattern and associated gene mutations in M. tuberculosis isolates from newly diagnosed pulmonary tuberculosis patients in Addis Ababa, Ethiopia. PLoS One. 2020;15(8):e0236054. doi:10.1371/journal.pone.0236054
  • Alelign A, Petros B, Ameni G. Smear positive tuberculosis and genetic diversity of M. tuberculosis isolates in individuals visiting health facilities in South Gondar Zone, northwest Ethiopia. PLoS One. 2019;14(8):e0216437. doi:10.1371/journal.pone.0216437
  • Diriba G, Alemu A, Tola HH, et al. Pre-extensively drug-resistant tuberculosis among multidrug-resistant tuberculosis patients in Ethiopia: a laboratory-based surveillance study. IJID Reg. 2022;5:39–43. doi:10.1016/j.ijregi.2022.08.012
  • Agonafir M, Lemma E, Wolde-Meskel D, et al. Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia. Int J Tuberc Lung Dis. 2010;14(10):1259–1265.
  • Shibabaw A, Gelaw B, Gebreyes W, Robinson R, Wang SH, Tessema B. The burden of pre-extensively and extensively drug-resistant tuberculosis among MDR-TB patients in the Amhara region, Ethiopia. PLoS One. 2020;15(2):e0229040. doi:10.1371/journal.pone.0229040
  • Avalos E, Catanzaro D, Catanzaro A, et al. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One. 2015;10(3):e0120470. doi:10.1371/journal.pone.0120470
  • Chaoui I, Oudghiri A, El Mzibri M. Characterization of gyrA and gyrB mutations associated with fluoroquinolone resistance in Mycobacterium tuberculosis isolates from Morocco. J Glob Antimicrob Resist. 2018;12:171–174. doi:10.1016/j.jgar.2017.10.003
  • Jou R, Lee WT, Kulagina EV, et al. Redefining MDR-TB: comparison of Mycobacterium tuberculosis clinical isolates from Russia and Taiwan. Infect Genet Evol. 2019;72:141–146. doi:10.1016/j.meegid.2018.12.031
  • Singh PK, Singh U, Jain A. Emergence of specific gyr A mutations associated high-level fluoroquinolone-resistant Mycobacterium tuberculosis among multidrug-resistant tuberculosis cases in North India. Microb Drug Resist. 2021;27(5):647–651. doi:10.1089/mdr.2020.0240
  • Kabir S, Tahir Z, Mukhtar N, Sohail M, Saqalein M, Rehman A. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm Med. 2020;20(1):138. doi:10.1186/s12890-020-1172-4
  • Jnawali HN, Hwang SC, Park YK, et al. Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagn Microbiol Infect Dis. 2013;76(2):187–196. doi:10.1016/j.diagmicrobio.2013.02.035
  • Ajbani K, Nikam C, Kazi M, et al. Evaluation of genotype MTBDRsl assay to detect drug resistance associated with fluoroquinolones, aminoglycosides and ethambutol on clinical sediments. PLoS One. 2012;7(11):e49433. doi:10.1371/journal.pone.0049433
  • Singhal R, Reynolds PR, Marola JL, et al. Sequence analysis of fluoroquinolone resistance-associated genes gyrA and gyrB in clinical Mycobacterium tuberculosis isolates from patients suspected of having multidrug-resistant tuberculosis in New Delhi, India. J Clin Microbiol. 2016;54(9):2298–2305. doi:10.1128/JCM.00670-16
  • Ford C, Yusim K, Ioerger T, et al. Mycobacterium tuberculosis – heterogeneity revealed through whole genome sequencing. Tuberculosis. 2012;92(3):194–201. doi:10.1016/j.tube.2011.11.003
  • Abakur EHA, Alnour TMS, Abuduhier F, Albalawi FMA, Alfifi KAS. Emergence of heteroresistance Mycobacterium tuberculosis in Saudi Arabia. Infect Disord Drug Targets. 2020;20(4):491–494. doi:10.2174/1871526519666190326141550
  • Liang B, Tan Y, Li Z, et al. Highly sensitive detection of isoniazid heteroresistance in Mycobacterium tuberculosis by DeepMelt assay. J Clin Microbiol. 2018;56(2):e01239. doi:10.1128/JCM.01239-17
  • Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to Amikacin, Kanamycin and Capreomycin: a systematic review. PLoS One. 2012;7(3):12. doi:10.1371/journal.pone.0033275
  • World Health Organization. Meeting Report of the WHO Expert Consultation on the Definition of Extensively Drug-Resistant Tuberculosis. World Health Organization; 2021. Available from: https://apps.who.int/iris/handle/10665/338776. Accessed April 1, 2022.