314
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Mycobacterium tuberculosis Intra-Host Evolution Among Drug-Resistant Tuberculosis Patients Failing Treatment

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 2849-2859 | Received 17 Feb 2023, Accepted 29 Apr 2023, Published online: 09 May 2023

References

  • O’Neill J. Grande-Bretagne. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist. 2014;2014:1.
  • World Health Organization. Meeting Report of the WHO Expert Consultation on the Definition of Extensively Drug-Resistant Tuberculosis, 27–29 October 2020. Geneva: World Health Organization; 2020.
  • World Health Organisation. Global Tuberculosis Report 2021. Geneva: World Health Organisation; 2021.
  • Chawla K, Martinez E, Kumar A, Shenoy VP, Sintchenko V. Whole-genome sequencing reveals genetic signature of bedaquiline resistance in a clinical isolate of Mycobacterium tuberculosis. J Glob Antimicrob Resist. 2018;15:103–104. doi:10.1016/j.jgar.2018.09.006
  • de Vos M, Ley SD, Wiggins KB, et al. Bedaquiline microheteroresistance after cessation of tuberculosis treatment. N Engl J Med. 2019;380(22):2178–2180. doi:10.1056/NEJMc1815121
  • Eldholm V, Norheim G, von der Lippe B, et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 2014;15(11):490. doi:10.1186/s13059-014-0490-3
  • Mokrousov I, Akhmedova G, Polev D, Molchanov V, Vyazovaya A. Acquisition of bedaquiline resistance by extensively drug-resistant Mycobacterium tuberculosis strain of Central Asian Outbreak clade. Clin Microbiol Infect. 2019;25(10):1295–1297. doi:10.1016/j.cmi.2019.06.014
  • Polsfuss S, Hofmann-Thiel S, Merker M, et al. Emergence of low-level delamanid and bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clin Infect Dis. 2019;69(7):1229–1231. doi:10.1093/cid/ciz074
  • Trauner A, Liu Q, Via LE, et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol. 2017;18(1):71. doi:10.1186/s13059-017-1196-0
  • Black PA, de Vos M, Louw GE, et al. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC Genomics. 2015;16:857. doi:10.1186/s12864-015-2067-2
  • Merker M, Kohl TA, Roetzer A, et al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One. 2013;8(12):e82551. doi:10.1371/journal.pone.0082551
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433. doi:10.1128/MMBR.00016-10
  • Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204(12):1951–1959. doi:10.1093/infdis/jir658
  • Ismail N, Peters RPH, Ismail NA, Omar SV. Clofazimine exposure in vitro selects efflux pump mutants and bedaquiline resistance. Antimicrob Agents Chemother. 2019;63(3). doi:10.1128/AAC.02141-18
  • Peretokina IV, Krylova LY, Antonova OV, et al. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates. J Infect. 2020;80(5):527–535. doi:10.1016/j.jinf.2020.01.007
  • Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of cross-resistance to bedaquiline and clofazimine following treatment for tuberculosis in Pakistan. Antimicrob Agents Chemother. 2019;63(9). doi:10.1128/AAC.00915-19
  • Nimmo C, Millard J, Brien K, et al. Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients. Eur Respir J. 2020;55(6):1902383. doi:10.1183/13993003.02383-2019
  • Cabibbe AM, Trovato A, De Filippo MR, et al. Countrywide implementation of whole genome sequencing: an opportunity to improve tuberculosis management, surveillance and contact tracing in low incidence countries. Eur Respir J. 2018;51(6):1800387. doi:10.1183/13993003.00387-2018
  • Casali N, Broda A, Harris SR, Parkhill J, Brown T, Drobniewski F. Whole genome sequence analysis of a large isoniazid-resistant tuberculosis outbreak in London: a retrospective observational study. PLoS Med. 2016;13(10):e1002137. doi:10.1371/journal.pmed.1002137
  • Manson AL, Cohen KA, Abeel T, et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet. 2017;49(3):395–402. doi:10.1038/ng.3767
  • Cancino-Munoz I, Moreno-Molina M, Furio V, et al. Cryptic resistance mutations associated with misdiagnoses of multidrug-resistant tuberculosis. J Infect Dis. 2019;220(2):316–320. doi:10.1093/infdis/jiz104
  • Nimmo C, Brien K, Millard J, et al. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine. 2020;55:102747. doi:10.1016/j.ebiom.2020.102747
  • Vargas R, Freschi L, Marin M, et al. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. Elife. 2021;2021:10.
  • World Health Organization. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines used in the Treatment of Drug-Resistant Tuberculosis. Geneva: World Health Organization; 2018.
  • Ajbani K, Comas I, Coulter C, et al. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Isoniazid and the Rifamycins (‎rifampicin, Rifabutin and Rifapentine). Geneva: World Health Organization; 2021.
  • Avalos E, Catanzaro D, Catanzaro A, et al. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One. 2015;10(3):e0120470. doi:10.1371/journal.pone.0120470
  • Rigouts L, Coeck N, Gumusboga M, et al. Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J Antimicrob Chemother. 2016;71(2):314–323. doi:10.1093/jac/dkv360
  • Uddin MKM, Ather MF, Nasrin R, et al. Correlation of gyr mutations with the minimum inhibitory concentrations of fluoroquinolones among multidrug-resistant mycobacterium tuberculosis isolates in Bangladesh. Pathogens. 2021;10(11):1422. doi:10.3390/pathogens10111422
  • Zhang X, Chen X, Wang B, et al. Molecular characteristic of both levofloxacin and moxifloxacin resistance in mycobacterium tuberculosis from individuals diagnosed with preextensive drug-resistant tuberculosis. Microbial Drug Res. 2022;28(3):280–287.
  • Chen X, He G, Lin S, et al. Analysis of serial multidrug-resistant tuberculosis strains causing treatment failure and within-host evolution by whole-genome sequencing. mSphere. 2020;5(6). doi:10.1128/mSphere.00884-20
  • Wollenberg KR, Desjardins CA, Zalutskaya A, et al. Whole-genome sequencing of mycobacterium tuberculosis provides insight into the evolution and genetic composition of drug-resistant tuberculosis in Belarus. J Clin Microbiol. 2017;55(2):457–469. doi:10.1128/JCM.02116-16
  • Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60(8):4590–4599. doi:10.1128/AAC.00753-16
  • Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2979–2981. doi:10.1128/AAC.00037-14
  • Ghajavand H, Kargarpour Kamakoli M, Khanipour S, et al. High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness. Antimicrob Agents Chemother. 2019;63(3). doi:10.1128/AAC.02530-18
  • Sonnenkalb L, Carter J, Spitaleri A, et al. Deciphering bedaquiline and clofazimine resistance in tuberculosis: an evolutionary medicine approach. bioRxiv. 2021;2021:436.
  • Zhang S, Chen J, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2015;70(9):2507–2510. doi:10.1093/jac/dkv150
  • Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One. 2014;9(7):e102135. doi:10.1371/journal.pone.0102135
  • Pang Y, Zong Z, Huo F, et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrob Agents Chemother. 2017;61(10). doi:10.1128/AAC.00900-17
  • Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2017;72(7):1901–1906. doi:10.1093/jac/dkx094
  • Ismail NA, Omar SV, Joseph L, et al. Defining bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: a retrospective cohort study. EBioMedicine. 2018;28:136–142. doi:10.1016/j.ebiom.2018.01.005
  • Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother. 2020;75(8):2031–2043. doi:10.1093/jac/dkaa136
  • Ismail N, Ismail NA, Omar SV, Peters RPH. In vitro study of stepwise acquisition of rv0678 and atpE mutations conferring bedaquiline resistance. Antimicrob Agents Chemother. 2019;63(8). doi:10.1128/AAC.00292-19
  • Ismail N, Rivière E, Limberis J, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe. 2021;2(11):e604–e16. doi:10.1016/S2666-5247(21)00175-0