239
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Effect of Amoxicillin Pre-Exposure on Treatment Outcomes and Antimicrobial Susceptibility in Patients with Urogenital Chlamydia trachomatis Infection

ORCID Icon, , ORCID Icon, , , & show all
Pages 3575-3587 | Received 28 Feb 2023, Accepted 25 May 2023, Published online: 06 Jun 2023

References

  • Kiguen AX, Marramá M, Ruiz S, et al. Prevalence, risk factors and molecular characterization of Chlamydia trachomatis in pregnant women from Córdoba, Argentina: a prospective study. PLoS One. 2019;14(5):e0217245. doi:10.1371/journal.pone.0217245
  • World Health Organization. Report on global sexually transmitted infection surveillance 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/277258/9789241565691-eng.pdf?sequence=5&isAllowed=y. Accessed January 13, 2023.
  • Yue X, Gong X, Li J, et al. Epidemiologic features of genital Chlamydia trachomatis I nfection at national sexually transmitted disease surveillance sites in China, 2015—2019. Chin J Dermatol. 2020:596–601. doi:10.35541/cjd.20200317
  • Huai P, Li F, Li Z, et al. Prevalence, risk factors, and medical costs of Chlamydia trachomatis infections in Shandong Province, China: a population-based, cross-sectional study. BMC Infect Dis. 2018;18(1):534. doi:10.1186/s12879-018-3432-y
  • Haggerty CL, Gottlieb SL, Taylor BD, et al. Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis. 2010;201 Suppl 2:S134–155. doi:10.1086/652395
  • Lee YS, Lee KS. Chlamydia and male lower urinary tract diseases. Korean J Urol. 2013;54(2):73–77. doi:10.4111/kju.2013.54.2.73
  • O’Connell CM, Ferone ME. Chlamydia trachomatis Genital Infections. Microb Cell. 2016;3(9):390–403. doi:10.15698/mic2016.09.525
  • Division for STD control and prevention of China CDC, Dermatology division of Chinese Medical Association, Venereal subspecialty committee of Chinese Dermatologist Association. The diagnosis and therapy guidelines for syphilis, gonorrhea, and urogenital Chlamydia trachomatis infection (2020). (in Chinese). Chin J Dermatol. 2020;53(3):168–179. doi:10.35541/cjd.20190808
  • Batteiger BE, Tu W, Ofner S, et al. Repeated Chlamydia trachomatis genital infections in adolescent women. J Infect Dis. 2010;201(1):42–51. doi:10.1086/648734
  • Horner PJ. Azithromycin antimicrobial resistance and genital Chlamydia trachomatis infection: duration of therapy may be the key to improving efficacy. Sex Transm Infect. 2012;88(3):154–156. doi:10.1136/sextrans-2011-050385
  • Handsfield HH. Questioning azithromycin for chlamydial infection. Sex Transm Dis. 2011;38(11):1028–1029. doi:10.1097/OLQ.0b013e318227a366
  • Phillips-Campbell R, Kintner J, Schoborg RV. Induction of the Chlamydia muridarum stress/persistence response increases azithromycin treatment failure in a murine model of infection. Antimicrob Agents Chemother. 2014;58(3):1782–1784. doi:10.1128/AAC.02097-13
  • Pitt R, Alexander S, Ison C, et al. Phenotypic antimicrobial susceptibility testing of Chlamydia trachomatis isolates from patients with persistent or successfully treated infections. J Antimicrob Chemother. 2018;73(3):680–686. doi:10.1093/jac/dkx454
  • de Barbeyrac B. Current aspects of Chlamydia trachomatis infection. Presse Med. 2013;42(4 Pt 1):440–445. doi:10.1016/j.lpm.2012.09.025
  • Fohner AE, Sparreboom A, Altman RB, et al. PharmGKB summary: macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics. 2017;27(4):164–167. doi:10.1097/FPC.0000000000000270
  • Shao L, You C, Cao J, et al. High treatment failure rate is better explained by resistance gene detection than by minimum inhibitory concentration in patients with urogenital Chlamydia trachomatis infection. Int J Infect Dis. 2020;96:121–127. doi:10.1016/j.ijid.2020.03.015
  • Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299(3):C539–548. doi:10.1152/ajpcell.00047.2010
  • Borel N, Leonard C, Slade J, et al. Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine. Curr Clin Microbiol Rep. 2016;3:10–18. doi:10.1007/s40588-016-0028-4
  • Suchland RJ, Sandoz KM, Jeffrey BM, et al. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother. 2009;53(11):4604–4611. doi:10.1128/AAC.00477-09
  • de Barbeyrac B, Dupon M, Rodriguez P, et al. A Tn1545-like transposon carries the tet(M) gene in tetracycline resistant strains of Bacteroides ureolyticus as well as Ureaplasma urealyticum but not Neisseria gonorrhoeae. J Antimicrob Chemother. 1996;37(2):223–232. doi:10.1093/jac/37.2.223
  • Dégrange S, Renaudin H, Charron A, et al. Tetracycline resistance in Ureaplasma spp. and Mycoplasma hominis: prevalence in Bordeaux, France, from 1999 to 2002 and description of two tet(M)-positive isolates of M. hominis susceptible to tetracyclines. Antimicrob Agents Chemother. 2008;52(2):742–744. doi:10.1128/AAC.00960-07
  • Mardassi B, Aissani N, Moalla I, et al. Evidence for the predominance of a single tet(M) gene sequence type in tetracycline-resistant Ureaplasma parvum and Mycoplasma hominis isolates from Tunisian patients. J Med Microbiol. 2012;61(Pt 9):1254–1261. doi:10.1099/jmm.0.044016-0
  • Panzetta ME, Valdivia RH, Saka HA. Chlamydia Persistence: a Survival Strategy to Evade Antimicrobial Effects in-vitro and in-vivo. Front Microbiol. 2018;9:3101. doi:10.3389/fmicb.2018.03101
  • Hocking JS, Kong FY, Timms P, et al. Treatment of rectal chlamydia infection may be more complicated than we originally thought. J Antimicrob Chemother. 2015;70(4):961–964. doi:10.1093/jac/dku493
  • Kintner J, Lajoie D, Hall J, et al. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol. 2014;4:44. doi:10.3389/fcimb.2014.00044
  • Lewis ME, Belland RJ, AbdelRahman YM, et al. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front Cell Infect Microbiol. 2014;4:71. doi:10.3389/fcimb.2014.00071
  • Ds Y, Gao Z, Mx A, et al. Investigation of Amoxicillin Use in Fever Clinic Patients: standardized Application of Antibiotics is Still Challenging. Infect Microbes Dis. 2022;4(1):41–43. doi:10.1097/IM9.0000000000000081
  • Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52(1):1. doi:10.1093/jac/dkg301
  • Suchland RJ, Geisler WM, Stamm WE. Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp. Antimicrob Agents Chemother. 2003;47(2):636–642. doi:10.1128/AAC.47.2.636-642.2003
  • Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae. Future Microbiol. 2010;5(9):1427–1442. doi:10.2217/fmb.10.96
  • Mestrovic T, Ljubin-Sternak S. Molecular mechanisms of Chlamydia trachomatis resistance to antimicrobial drugs. Front Biosci. 2018;23(4):656–670. doi:10.2741/4611
  • Qi ML, Guo YL, Wang QQ, et al. Consensus by Chinese Expert Panel on Chlamydia trachomatis-Resistant and Chlamydia trachomatis-Persistent Infection. Chin Med J. 2017;130(23):2852–2856. doi:10.4103/0366-6999.219159
  • Dugan J, Rockey DD, Jones L, et al. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother. 2004;48(10):3989–3995. doi:10.1128/AAC.48.10.3989-3995.2004
  • Shao L, Guo Y, Jiang Y, et al. Sensitivity of the Standard Chlamydia trachomatis Culture Method Is Improved After One Additional In Vitro Passage. J Clin Lab Anal. 2016;30(5):697–701. doi:10.1002/jcla.21924
  • Scidmore MA. Cultivation and Laboratory Maintenance of Chlamydia trachomatis. Curr Protoc Microbiol. 2005. doi:10.1002/9780471729259.mc11a01s00
  • Orhan G, Bayram A, Zer Y, et al. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol. 2005;43(1):140–143. doi:10.1128/JCM.43.1.140-143.2005
  • Biswas S, Raoult D, Rolain JM. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int J Antimicrob Agents. 2008;32(3):207–220. doi:10.1016/j.ijantimicag.2008.03.017
  • Dean D, Rothschild J, Ruettger A, et al. Zoonotic Chlamydiaceae species associated with trachoma, Nepal. Emerg Infect Dis. 2013;19(12):1948–1955. doi:10.3201/eid1912.130656
  • De Puysseleyr K, De Puysseleyr L, Dhondt H, et al. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse. BMC Infect Dis. 2014;14:1–6. doi:10.1186/s12879-014-0560-x
  • De Puysseleyr L, De Puysseleyr K, Braeckman L, et al. Assessment of Chlamydia suis Infection in Pig Farmers. Transbound Emerg Dis. 2017;64(3):826–833. doi:10.1111/tbed.12446
  • O’Neill CE, Seth-Smith H, Van Der Pol B, et al. Chlamydia trachomatis clinical isolates identified as tetracycline resistant do not exhibit resistance in vitro: whole-genome sequencing reveals a mutation in porB but no evidence for tetracycline resistance genes. Microbiology. 2013;159(Pt 4):748–756. doi:10.1099/mic.0.065391-0
  • Joseph SJ, Marti H, Didelot X, et al. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: a Recently Identified Zoonotic Pathogen. Genome Biol Evol. 2016;8(8):2613–2623. doi:10.1093/gbe/evw182
  • Aitolo GL, Adeyemi OS, Afolabi BL, et al. Neisseria gonorrhoeae Antimicrobial Resistance: past to Present to Future. Curr Microbiol. 2021;78(3):867–878. doi:10.1007/s00284-021-02353-8
  • Nguyen P, Pham HV, Van DH, et al. Randomized controlled trial of the relative efficacy of high-dose intravenous ceftriaxone and oral cefixime combined with doxycycline for the treatment of Chlamydia trachomatis and Neisseria gonorrhoeae co-infection. BMC Infect Dis. 2022;22(1):607. doi:10.1186/s12879-022-07595-w
  • Ieven M, Van Looveren M, Sudigdoadi S, et al. Antimicrobial susceptibilities of Neisseria gonorrhoeae strains isolated in Java, Indonesia. Sex Transm Dis. 2003;30(1):25–29. doi:10.1097/00007435-200301000-00006
  • Pitt R, Sadouki Z, Town K, et al. Detection of tet(M) in high-level tetracycline-resistant Neisseria gonorrhoeae. J Antimicrob Chemother. 2019;74(7):2115–2116. doi:10.1093/jac/dkz130
  • Morris DJ, Jones LC, Davies RL, et al. MYCO WELL D-ONE detection of Ureaplasma spp. and Mycoplasma hominis in sexual health patients in Wales. Eur J Clin Microbiol Infect Dis. 2020;39(12):2427–2440. doi:10.1007/s10096-020-03993-7
  • Chalker VJ, Sharratt MG, Rees CL, et al. Tetracycline Resistance Mediated by tet(M) Has Variable Integrative Conjugative Element Composition in Mycoplasma hominis Strains Isolated in the United Kingdom from 2005 to 2015. Antimicrob Agents Chemother. 2021;65(4). doi:10.1128/AAC.02513-20
  • Li M, Zhang X, Huang K, et al. Presence of Chlamydia trachomatis and Mycoplasma spp., but not Neisseria gonorrhoeae and Treponema pallidum, in women undergoing an infertility evaluation: high prevalence of tetracycline resistance gene tet(M). AMB Express. 2017;7(1):206. doi:10.1186/s13568-017-0510-2
  • Xue Y, Zheng H, Mai Z, et al. An in vitro model of azithromycin-induced persistent Chlamydia trachomatis infection. FEMS Microbiol Lett. 2017;364(14). doi:10.1093/femsle/fnx145
  • Bhengraj AR, Srivastava P, Mittal A. Lack of mutation in macrolide resistance genes in Chlamydia trachomatis clinical isolates with decreased susceptibility to azithromycin. Int J Antimicrob Agents. 2011;38(2):178–179. doi:10.1016/j.ijantimicag.2011.03.015
  • Deguchi T, Hatazaki K, Ito S, et al. Macrolide and fluoroquinolone resistance is uncommon in clinical strains of Chlamydia trachomatis. J Infect Chemother. 2018;24(8):610–614. doi:10.1016/j.jiac.2018.03.007
  • Wyrick PB, Knight ST. Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother. 2004;54(1):79–85. doi:10.1093/jac/dkh283
  • Reveneau N, Crane DD, Fischer E, et al. Bactericidal activity of first-choice antibiotics against gamma interferon-induced persistent infection of human epithelial cells by Chlamydia trachomatis. Antimicrob Agents Chemother. 2005;49(5):1787–1793. doi:10.1128/AAC.49.5.1787-1793.2005
  • Augenbraun MH, McCormack WM. Urethritis. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Philadelphia, PA: Elsevier Saunders; 2015:1349–1357.
  • Skilton RJ, Cutcliffen LT, Barlow D, et al. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS One. 2009;4(11):e7723. doi:10.1371/journal.pone.0007723
  • Bhengraj AR, Vardhan H, Srivastava P, et al. Decreased susceptibility to azithromycin and doxycycline in clinical isolates of Chlamydia trachomatis obtained from recurrently infected female patients in India. Chemotherapy. 2010;56(5):371–377. doi:10.1159/000314998
  • Wang M, Jiang Y, Shao L, et al. In vitro susceptibilities of urogenital Chlamydia trachomatis clinical isolates to azithromycin alone and in combination with other antimicrobial agents. (in Chinese). Zhonghua Wei Sheng Wu Xue He Mian Yi Xue Za Zhi. 2010;8:722–726. doi:10.3760/cma.j.issn.0254-5101.2010.08.008
  • Wang M, Jiang Y, Shao L, et al. Interactions between moxifloxacin and other antimicrobial agents against Chlamydia trachomatis in vitro. (in Chinese). J Clin Dermatol. 2011;40(1):4. doi:10.3969/j.issn.1000-4963.2011.01.003
  • Singh V, Bala M, Bhargava A, et al. In vitro efficacy of 21 dual antimicrobial combinations comprising novel and currently recommended combinations for treatment of drug resistant gonorrhoea in future era. PLoS One. 2018;13(3):e0193678. doi:10.1371/journal.pone.0193678