242
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , & show all
Pages 6567-6586 | Received 29 Jun 2023, Accepted 27 Sep 2023, Published online: 06 Oct 2023

References

  • Wojcicki M, Chmielarczyk A, Swider O, et al. Bacterial pathogens in the food industry: antibiotic resistance and virulence factors of Salmonella enterica strains isolated from food chain links. Pathogens. 2022;11(11):1323. doi:10.3390/pathogens11111323
  • Ikejiri K, Suzuki K, Ito A, et al. Invasive Salmonella enteritidis infection complicated by bacterial meningitis and vertebral osteomyelitis shortly after influenza A infection in an immunocompetent young adult. J Infect Chemother. 2020;26(2):269–273. doi:10.1016/j.jiac.2019.08.001
  • Lapierre L, Cornejo J, Zavala S, et al. Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella infantis strains isolated from chicken meat: first findings in Chile. Animals. 2020;10(6):1049. doi:10.3390/ani10061049
  • Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol. 2016;7:1881. doi:10.3389/fmicb.2016.01881
  • Dai W, Zhang Y, Zhang J, et al. Analysis of antibiotic-induced drug resistance of Salmonella enteritidis and its biofilm formation mechanism. Bioengineered. 2021;12(2):10254–10263. doi:10.1080/21655979.2021.1988251
  • Dong N, Li Y, Zhao J, et al. The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan Province, China. BMC Infect Dis. 2020;20(1):511. doi:10.1186/s12879-020-05203-3
  • Melo RT, Galvao NN, Guidotti-Takeuchi M, et al. Molecular characterization and survive abilities of Salmonella Heidelberg strains of poultry origin in Brazil. Front Microbiol. 2021;12:674147. doi:10.3389/fmicb.2021.674147
  • Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol. 2019;9:270. doi:10.3389/fcimb.2019.00270
  • Lyu N, Feng Y, Pan Y, et al. Genomic characterization of Salmonella enterica isolates from retail meat in Beijing, China. Front Microbiol. 2021;12:636332. doi:10.3389/fmicb.2021.636332
  • Aljahdali NH, Sanad YM, Han J, Foley SL. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiol. 2020;20(1):353. doi:10.1186/s12866-020-02008-x
  • Pornsukarom S, van Vliet AHM, Thakur S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics. 2018;19(1):801. doi:10.1186/s12864-018-5137-4
  • McDermott PF, Tyson GH, Kabera C, et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother. 2016;60(9):5515–5520. doi:10.1128/AAC.01030-16
  • Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol. 2023;242(Pt 1):124680. doi:10.1016/j.ijbiomac.2023.124680
  • Li J, Smith LS, Zhu HJ. Data-independent acquisition (DIA): an emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug Discov Today Technol. 2021;39:49–56. doi:10.1016/j.ddtec.2021.06.006
  • Tarbeeva S, Kozlova A, Sarygina E, Kiseleva O, Ponomarenko E, Ilgisonis E. Food for thought: proteomics for meat safety. Life. 2023;13(2):255. doi:10.3390/life13020255
  • Cockerill FR. Performance Standards For Antimicrobial Susceptibility Testing: Twenty-Third Informational Supplement. Clinical and Laboratory Standards Institute; 2013.
  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–964. doi:10.1093/nar/25.5.955
  • Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–3108. doi:10.1093/nar/gkm160
  • Gardner PP, Daub J, Tate JG, et al. Rfam: updates to the RNA families database. Nucleic Acids Res. 2009;37(Database issue):D136–140. doi:10.1093/nar/gkn766
  • Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016;44(D1):D694–697. doi:10.1093/nar/gkv1239
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D525. doi:10.1093/nar/gkz935
  • Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43(Database issue):D261–269. doi:10.1093/nar/gku1223
  • Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25. doi:10.1038/75556
  • Jones P, Binns D, Chang HY, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240. doi:10.1093/bioinformatics/btu031
  • Nandi T, Ong C, Singh AP, et al. A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathog. 2010;6(4):e1000845. doi:10.1371/journal.ppat.1000845
  • Choi M, Chang CY, Clough T, et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics. 2014;30(17):2524–2526. doi:10.1093/bioinformatics/btu305
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–815. doi:10.1093/nar/gks1094
  • Wang Y, Liu Y, Lyu N, et al. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. Natl Sci Rev. 2023;10(3):nwac269. doi:10.1093/nsr/nwac269
  • Qi X, Li P, Xu X, Yuan Y, Bu S, Lin D. Epidemiological and molecular investigations on Salmonella responsible for gastrointestinal infections in the Southwest of Shanghai From 1998 to 2017. Front Microbiol. 2019;10:2025. doi:10.3389/fmicb.2019.02025
  • Xu D, Ji L, Yan W, Chen L, Shabbir MAB. Characterization of Clinical Salmonella entericas Trains in Huzhou, China. Can J Infect Dis Med Microbiol. 2022;2022:7280376. doi:10.1155/2022/7280376
  • Yue M, Li X, Liu D, Hu X. Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. J Clin Lab Anal. 2020;34(12):e23525. doi:10.1002/jcla.23525
  • Fardsanei F, Soltan Dallal MM, Zahraei Salehi T, Douraghi M, Memariani M, Memariani H. Antimicrobial resistance patterns, virulence gene profiles, and genetic diversity of Salmonella enterica serotype enteritidis isolated from patients with gastroenteritis in various Iranian cities. Iran J Basic Med Sci. 2021;24(7):914–921. doi:10.22038/ijbms.2021.54019.12142
  • Yang J, Gao S, Chang Y, Su M, Xie Y, Sun S. Occurrence and characterization of Salmonella isolated from large-scale breeder farms in Shandong Province, China. Biomed Res Int. 2019;2019:8159567. doi:10.1155/2019/8159567
  • Tang B, Elbediwi M, Nambiar RB, Yang H, Lin J, Yue M. Genomic characterization of antimicrobial-resistant salmonella enterica in duck, chicken, and pig farms and retail markets in Eastern China. Microbiol Spectr. 2022;10(5):e0125722. doi:10.1128/spectrum.01257-22
  • Jeamsripong S, Kuldee M, Thaotumpitak V, Chuanchuen R, Karunasagar I. Antimicrobial resistance, extended-spectrum β-lactamase production and virulence genes in Salmonella enterica and Escherichia coli isolates from estuarine environment. PLoS One. 2023;18(4):e0283359. doi:10.1371/journal.pone.0283359
  • Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018;2018:9519718. doi:10.1155/2018/9519718
  • Zwama M, Nishino K. Ever-adapting RND efflux pumps in gram-negative multidrug-resistant pathogens: a race against time. Antibiotics. 2021;10(7):774. doi:10.3390/antibiotics10070774
  • Vilela FP, Rodrigues DDP, Allard MW, Falcao JP, Lianou A. Prevalence of efflux pump and heavy metal tolerance encoding genes among Salmonella enterica serovar Infantis strains from diverse sources in Brazil. PLoS One. 2022;17(11):e0277979. doi:10.1371/journal.pone.0277979
  • Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe. 2017;22(2):217–231. doi:10.1016/j.chom.2017.07.009
  • Barilleau E, Vedrine M, Koczerka M, et al. Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium. BMC Microbiol. 2021;21(1):153. doi:10.1186/s12866-021-02187-1
  • Quan G, Xia P, Zhao J, et al. Fimbriae and related receptors for Salmonella Enteritidis. Microb Pathog. 2019;126:357–362. doi:10.1016/j.micpath.2018.10.025
  • Mansour MN, Yaghi J, El Khoury A, et al. Prediction of Salmonella serovars isolated from clinical and food matrices in Lebanon and genomic-based investigation focusing on enteritidis serovar. Int J Food Microbiol. 2020;333:108831. doi:10.1016/j.ijfoodmicro.2020.108831
  • Wang W, Chen J, Shao X, Huang P, Zha J, Ye Y. Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Sci Nutr. 2021;9(9):4701–4710. doi:10.1002/fsn3.2266
  • Sun L, Yang S, Deng Q, et al. Salmonella effector SpvB disrupts intestinal epithelial barrier integrity for bacterial translocation. Front Cell Infect Microbiol. 2020;10:606541. doi:10.3389/fcimb.2020.606541
  • Zhou L, Li Y, Gao S, et al. Salmonella spvC gene inhibits autophagy of host cells and suppresses NLRP3 as well as NLRC4. Front Immunol. 2021;12:639019. doi:10.3389/fimmu.2021.639019
  • Zakaria Z, Hassan L, Sharif Z, et al. Analysis of Salmonella enterica serovar enteritidis isolates from chickens and chicken meat products in Malaysia using PFGE, and MLST. BMC Vet Res. 2020;16(1):393. doi:10.1186/s12917-020-02605-y
  • Chen J, Ed-Dra A, Zhou H, Wu B, Zhang Y, Yue M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front Public Health. 2022;10:988317. doi:10.3389/fpubh.2022.988317
  • Yan S, Zhang W, Li C, et al. Serotyping, MLST, and core genome MLST analysis of Salmonella enterica from different sources in China during 2004–2019. Front Microbiol. 2021;12:688614. doi:10.3389/fmicb.2021.688614
  • Shen X, Yin L, Zhang A, et al. Prevalence and characterization of salmonella isolated from chickens in Anhui, China. Pathogens. 2023;12(3):465. doi:10.3390/pathogens12030465