282
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Global Trends in Research of Antimicrobial Peptides for the Treatment of Drug-Resistant Bacteria from 1995 to 2021: A Bibliometric Analysis

ORCID Icon, , , , , , & show all
Pages 4789-4806 | Received 05 Mar 2023, Accepted 01 Jun 2023, Published online: 24 Jul 2023

References

  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2). doi:10.1128/microbiolspec.VMBF-0016-2015
  • Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. doi:10.1016/j.mib.2019.10.008
  • Magana M, Pushpanathan M, Santos AL, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020;20(9):e216–e230. doi:10.1016/S1473-3099(20)30327-3
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–983. doi:10.1016/S0092-8674(00)80172-5
  • Wang J, Dou X, Song J, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev. 2019;39(3):831–859. doi:10.1002/med.21542
  • Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res. 2017;61:1.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–395. doi:10.1038/415389a
  • Chen JJ, Schmucker LN, Visco DP. Pharmaceutical machine learning: virtual high-throughput screens identifying promising and economical small molecule inhibitors of complement factor C1s. Biomolecules. 2018;8(2):24. doi:10.3390/biom8020024
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55. doi:10.1124/pr.55.1.2
  • Kabelka I, Vácha R. Advances in molecular understanding of α-helical membrane-active peptides. Acc Chem Res. 2021;54(9):2196–2204. doi:10.1021/acs.accounts.1c00047
  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35(43):13723–13728. doi:10.1021/bi9620621
  • Mookherjee N, Hancock REW. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64(7–8):922–933. doi:10.1007/s00018-007-6475-6
  • Enoki TA, Moreira-Silva I, Lorenzon EN, et al. Antimicrobial peptide K-W-Hya1 induces stable structurally modified lipid domains in anionic membranes. Langmuir. 2018;34(5):2014–2025. doi:10.1021/acs.langmuir.7b03408
  • Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):48. doi:10.1186/s40779-021-00343-2
  • Roque-Borda CA, Bento da Silva P, Rodrigues MC, et al. Pharmaceutical nanotechnology: antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem. 2022;241:114640. doi:10.1016/j.ejmech.2022.114640
  • Roque-Borda CA, da Silva PB, Rodrigues MC, et al. Challenge in the discovery of new drugs: antimicrobial peptides against WHO-list of critical and high-priority bacteria. Pharmaceutics. 2021;13(6):773. doi:10.3390/pharmaceutics13060773
  • Smith DR. Bibliometrics, dermatology and contact dermatitis. Contact Dermatitis. 2008;59(3):133–136. doi:10.1111/j.1600-0536.2008.01405.x
  • Merrifield EL, Mitchell SA, Ubach J, Boman HG, Andreu D, Merrifield RB. D-enantiomers of 15-residue cecropin A-melittin hybrids. Int J Pept Protein Res. 1995;46(3–4):214–220. doi:10.1111/j.1399-3011.1995.tb00592.x
  • Oren Z, Hong J, Shai Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem. 1997;272(23):14643–14649. doi:10.1074/jbc.272.23.14643
  • Roychoudhury S, Blondelle SE, Collins SM, et al. Use of combinatorial library screening to identify inhibitors of a bacterial two-component signal transduction kinase. Mol Divers. 1998;4(3):173–182. doi:10.1023/A:1009695718427
  • Mayo KH, Haseman J, Ilyina E, Gray B. Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing protein-like bactericidal and endotoxin neutralizing activities. Biochim Biophys Acta. 1998;1425(1):81–92. doi:10.1016/S0304-4165(98)00053-1
  • Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother. 1999;43(7):1542–1548. doi:10.1128/AAC.43.7.1542
  • Fernandez-Lopez S, Kim HS, Choi EC, et al. Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature. 2001;412(6845):452–455. doi:10.1038/35086601
  • de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014;10(5):e1004152. doi:10.1371/journal.ppat.1004152
  • Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8(6):711–724. doi:10.2217/fmb.13.39
  • Shukla A, Fleming KE, Chuang HF, et al. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials. 2010;31(8):2348–2357. doi:10.1016/j.biomaterials.2009.11.082
  • Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC Bioinform. 2007;8:263. doi:10.1186/1471-2105-8-263
  • Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MA, Schneider JP. Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials. 2012;33(35):8907–8916. doi:10.1016/j.biomaterials.2012.08.046
  • Ghosh C, Manjunath GB, Akkapeddi P, et al. Small molecular antibacterial peptoid mimics: the simpler the better! J Med Chem. 2014;57(4):1428–1436. doi:10.1021/jm401680a
  • Field D, Begley M, O’Connor PM, et al. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One. 2012;7(10):e46884. doi:10.1371/journal.pone.0046884
  • Wiradharma N, Khoe U, Hauser CAE, Seow SV, Zhang S, Yang YY. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials. 2011;32(8):2204–2212. doi:10.1016/j.biomaterials.2010.11.054
  • Lata S, Mishra NK, Raghava GPS. AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinform. 2010;11(Suppl 1):S19. doi:10.1186/1471-2105-11-S1-S19
  • Dartois V, Sanchez-Quesada J, Cabezas E, et al. Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob Agents Chemother. 2005;49(8):3302–3310. doi:10.1128/AAC.49.8.3302-3310.2005
  • Xiong M, Lee MW, Mansbach RA, et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc Natl Acad Sci U S A. 2015;112(43):13155–13160. doi:10.1073/pnas.1507893112
  • Zhou J, Yao D, Qian Z, et al. Bacteria-responsive intelligent wound dressing: simultaneous In situ detection and inhibition of bacterial infection for accelerated wound healing. Biomaterials. 2018;161:11–23. doi:10.1016/j.biomaterials.2018.01.024
  • Deslouches B, Islam K, Craigo JK, Paranjape SM, Montelaro RC, Mietzner TA. Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother. 2005;49(8):3208–3216. doi:10.1128/AAC.49.8.3208-3216.2005
  • Lakshmaiah Narayana J, Chen J-Y. Antimicrobial peptides: possible anti-infective agents. Peptides. 2015;72:88–94. doi:10.1016/j.peptides.2015.05.012
  • Mourtada R, Herce HD, Yin DJ, et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat Biotechnol. 2019;37(10):1186–1197. doi:10.1038/s41587-019-0222-z
  • Engler AC, Shukla A, Puranam S, Buss HG, Jreige N, Hammond PT. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules. 2011;12(5):1666–1674. doi:10.1021/bm2000583
  • Zharkova MS, Orlov DS, Golubeva OY, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front Cell Infect Microbiol. 2019;9:128. doi:10.3389/fcimb.2019.00128
  • Teng P, Huo D, Nimmagadda A, et al. Small antimicrobial agents based on acylated reduced amide scaffold. J Med Chem. 2016;59(17):7877–7887. doi:10.1021/acs.jmedchem.6b00640
  • Wang M, Gao R, Zheng M, et al. Development of bis-cyclic imidazolidine-4-one derivatives as potent antibacterial agents. J Med Chem. 2020;63(24):15591–15602. doi:10.1021/acs.jmedchem.0c00171
  • Zheng M, Lin H, Zhang W, Tang S, Liu D, Cai J. Poly(l-ornithine)-grafted zinc phthalocyanines as dual-functional antimicrobial agents with intrinsic membrane damage and photothermal ablation capacity. ACS Infect Dis. 2021;7(10):2917–2929. doi:10.1021/acsinfecdis.1c00392
  • Wang M, Feng X, Gao R, et al. Modular design of membrane-active antibiotics: from macromolecular antimicrobials to small scorpionlike peptidomimetics. J Med Chem. 2021;64(14):9894–9905. doi:10.1021/acs.jmedchem.1c00312
  • Niu Y, Padhee S, Wu H, et al. Lipo-γ-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J Med Chem. 2012;55(8):4003–4009. doi:10.1021/jm300274p
  • Barman S, Konai MM, Samaddar S, Haldar J. Amino acid conjugated polymers: antibacterial agents effective against drug-resistant Acinetobacter baumannii with no detectable resistance. ACS Appl Mater Interfaces. 2019;11(37):33559–33572. doi:10.1021/acsami.9b09016
  • Liu Y, Ding S, Dietrich R, Märtlbauer E, Zhu K. A biosurfactant-inspired heptapeptide with improved specificity to kill MRSA. Angew Chem Int Ed Engl. 2017;56(6):1486–1490. doi:10.1002/anie.201609277
  • Salama A, Almaaytah A, Darwish RM. The design of alapropoginine, a novel conjugated ultrashort antimicrobial peptide with potent synergistic antimicrobial activity in combination with conventional antibiotics. Antibiotics. 2021;10:6.
  • Fichman G, Andrews C, Patel NL, Schneider JP. Antibacterial gel coatings inspired by the cryptic function of a mussel byssal peptide. Adv Mater. 2021;33(40):e2103677. doi:10.1002/adma.202103677