240
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification and Characterization of a Vancomycin Intermediate-Resistant Staphylococcus haemolyticus Isolated from Guangzhou, China

, , , , , , , , ORCID Icon & show all
Pages 3639-3647 | Received 31 Mar 2023, Accepted 02 Jun 2023, Published online: 08 Jun 2023

References

  • Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet Microbiol. 2009;134(1–2):45–54. doi:10.1016/j.vetmic.2008.09.009
  • Uçkay I, Pittet D, Vaudaux P, Sax H, Lew D, Waldvogel F. Foreign body infections due to Staphylococcus epidermidis. Ann Med. 2009;41(2):109–119. doi:10.1080/07853890802337045
  • Peixoto PB, Massinhani FH, Netto Dos Santos KR, et al. Methicillin-resistant Staphylococcus epidermidis isolates with reduced vancomycin susceptibility from bloodstream infections in a neonatal intensive care unit. J Med Microbiol. 2020;69(1):41–45. doi:10.1099/jmm.0.001117
  • Jean-Baptiste N, Benjamin DK, Cohen-Wolkowiez M, et al. Coagulase-negative staphylococcal infections in the neonatal intensive care unit. Infe Con Hos Epidemiol. 2011;32(7):679–686. doi:10.1086/660361
  • Garza-González E, Morfín-Otero R, Llaca-Díaz JM, Rodriguez-Noriega E. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect. 2010;138(5):645–654. doi:10.1017/s0950268809991361
  • Liu C, Chen C, Ye Y, et al. The emergence of Staphylococcus epidermidis simultaneously nonsusceptible to linezolid and teicoplanin in China. Diagn Microbiol Infect Dis. 2020;96(2):114956. doi:10.1016/j.diagmicrobio.2019.114956
  • Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870–926. doi:10.1128/cmr.00109-13
  • Pereira EM, Schuenck RP, Malvar KL, et al. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR. Microbiol Res. 2010;165(3):243–249. doi:10.1016/j.micres.2009.03.003
  • Krediet TG, Mascini EM, van Rooij E, et al. Molecular epidemiology of coagulase-negative staphylococci causing sepsis in a neonatal intensive care unit over an 11-year period. J Clin Microbiol. 2004;42(3):992–995. doi:10.1128/jcm.42.3.992-995.2004
  • Conlan S, Mijares LA, Becker J, et al. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol. 2012;13(7):R64. doi:10.1186/gb-2012-13-7-r64
  • John JF, Harvin AM. History and evolution of antibiotic resistance in coagulase-negative staphylococci: susceptibility profiles of new anti-staphylococcal agents. Ther Clin Risk Manag. 2007;3(6):1143–1152.
  • Rubinstein E, Keynan Y. Vancomycin revisited - 60 years later. Front Public Health. 2014;2:217. doi:10.3389/fpubh.2014.00217
  • CLSI. Performance Standards for Antimicrobial Suscepbility Testing. In: CLSI Supplement M100. Clinical and Laboratory Standards Institute; 2021.
  • Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother. 1998;42(2):199–209. doi:10.1093/jac/42.2.199
  • Xue T, Zhao L, Sun B. LuxS/AI-2 system is involved in antibiotic susceptibility and autolysis in Staphylococcus aureus NCTC 8325. Int J Antimicrob Agents. 2013;41(1):85–89. doi:10.1016/j.ijantimicag.2012.08.016
  • Chong J, Caya C, Lévesque S, Quach C. Heteroresistant vancomycin intermediate coagulase negative staphylococcus in the NICU: a systematic review. PLoS One. 2016;11(10):e0164136. doi:10.1371/journal.pone.0164136
  • Barros EM, Ceotto H, Bastos MC, Dos Santos KR, Giambiagi-Demarval M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol. 2012;50(1):166–168. doi:10.1128/jcm.05563-11
  • von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214. doi:10.2165/00003495-200565020-00003
  • Rogers KL, Fey PD, Rupp ME. Coagulase-negative staphylococcal infections. Infect Dis Clin North Am. 2009;23(1):73–98. doi:10.1016/j.idc.2008.10.001
  • Veach LA, Pfaller MA, Barrett M, Koontz FP, Wenzel RP. Vancomycin resistance in Staphylococcus haemolyticus causing colonization and bloodstream infection. J Clin Microbiol. 1990;28(9):2064–2068. doi:10.1128/jcm.28.9.2064-2068.1990
  • Qin M, Chen P, Deng B, et al. The emergence of a multidrug-resistant and pathogenic ST42 lineage of staphylococcus haemolyticus from a hospital in China. Microbiol Spect. 2022;10(3):e0234221. doi:10.1128/spectrum.02342-21
  • Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42(1):S25–34. doi:10.1086/491711
  • Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis. 2001;1(3):147–155. doi:10.1016/s1473-3099(01)00091-3
  • Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adva Res. 2020;21:169–176. doi:10.1016/j.jare.2019.10.005
  • Foucault ML, Courvalin P, Grillot-Courvalin C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(6):2354–2359. doi:10.1128/aac.01702-08
  • Meehl M, Herbert S, Götz F, Cheung A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(8):2679–2689. doi:10.1128/aac.00209-07
  • Howden BP, McEvoy CR, Allen DL, et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog. 2011;7(11):e1002359. doi:10.1371/journal.ppat.1002359
  • Matsuo M, Hishinuma T, Katayama Y, Cui L, Kapi M, Hiramatsu K. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob Agents Chemother. 2011;55(9):4188–4195. doi:10.1128/aac.00398-11
  • Hu Q, Peng H, Rao X. Molecular events for promotion of vancomycin resistance in vancomycin intermediate staphylococcus aureus. Front Microbiol. 2016;7:1601. doi:10.3389/fmicb.2016.01601
  • Zhu J, Liu B, Shu X, Sun B. A novel mutation of walK confers vancomycin-intermediate resistance in methicillin-susceptible Staphylococcus aureus. Int J Med Microbiol. 2021;311(2):151473. doi:10.1016/j.ijmm.2021.151473
  • Dubrac S, Bisicchia P, Devine KM, Msadek T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol. 2008;70(6):1307–1322. doi:10.1111/j.1365-2958.2008.06483.x
  • Peng H, Rao Y, Yuan W, et al. Reconstruction of the vancomycin-susceptible staphylococcus aureus phenotype from a vancomycin-intermediate S. aureus XN108. Front Microbiol. 2018;9:2955. doi:10.3389/fmicb.2018.02955
  • Hu J, Zhang X, Liu X, Chen C, Sun B. Mechanism of reduced vancomycin susceptibility conferred by walK mutation in community-acquired methicillin-resistant Staphylococcus aureus strain MW2. Antimicrob Agents Chemother. 2015;59(2):1352–1355. doi:10.1128/aac.04290-14
  • Gardete S, Kim C, Hartmann BM, et al. Genetic pathway in acquisition and loss of vancomycin resistance in a methicillin resistant Staphylococcus aureus (MRSA) strain of clonal type USA300. PLoS Pathog. 2012;8(2):e1002505. doi:10.1371/journal.ppat.1002505
  • Peng H, Hu Q, Shang W, et al. WalK(S221P), a naturally occurring mutation, confers vancomycin resistance in VISA strain XN108. J Antimicrob Chemother. 2017;72(4):1006–1013. doi:10.1093/jac/dkw518
  • Cui L, Ma X, Sato K, et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2003;41(1):5–14. doi:10.1128/jcm.41.1.5-14.2003
  • Dubrac S, Boneca IG, Poupel O, Msadek T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol. 2007;189(22):8257–8269. doi:10.1128/jb.00645-07
  • Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99–139. doi:10.1128/cmr.00042-09
  • Nunes AP, Teixeira LM, Iorio NL, et al. Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening. Int J Antimicrob Agents. 2006;27(4):307–315. doi:10.1016/j.ijantimicag.2005.11.013
  • Kim JW, Chung GT, Yoo JS, Lee YS, Yoo JI. Autolytic activity and molecular characteristics of Staphylococcus haemolyticus strains with induced vancomycin resistance. J Med Microbiol. 2012;61(Pt 10):1428–1434. doi:10.1099/jmm.0.041046-0
  • Zhu X, Liu C, Gao S, Lu Y, Chen Z, Sun Z. Vancomycin intermediate-resistant Staphylococcus aureus (VISA) isolated from a patient who never received vancomycin treatment. Int J Infect Dis. 2015;33:185–190. doi:10.1016/j.ijid.2014.12.038
  • Vidaillac C, Gardete S, Tewhey R, et al. Alternative mutational pathways to intermediate resistance to vancomycin in methicillin-resistant Staphylococcus aureus. J Infect Dis. 2013;208(1):67–74. doi:10.1093/infdis/jit127
  • Zhang X, Hu Q, Yuan W, et al. First report of a sequence type 239 vancomycin-intermediate Staphylococcus aureus isolate in Mainland China. Diagn Microbiol Infect Dis. 2013;77(1):64–68. doi:10.1016/j.diagmicrobio.2013.06.008
  • Katayama Y, Sekine M, Hishinuma T, Aiba Y, Hiramatsu K. Complete reconstitution of the vancomycin-intermediate staphylococcus aureus phenotype of strain Mu50 in vancomycin-susceptible S. aureus. Antimicrob Agents Chemother. 2016;60(6):3730–3742. doi:10.1128/aac.00420-16