855
Views
9
CrossRef citations to date
0
Altmetric
REVIEW

Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus

, , &
Pages 3271-3292 | Received 13 Mar 2023, Accepted 12 May 2023, Published online: 25 May 2023

References

  • Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol. 2020;53:51–60. doi:10.1016/j.mib.2020.02.005
  • Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st edition. J Clin Microbiol. 2021;59(12):e0021321. doi:10.1128/JCM.00213-21
  • Borg MA, Camilleri L. What is driving the epidemiology of methicillin-resistant Staphylococcus aureus infections in Europe? Microb Drug Resist. 2021;27(7):889–894. doi:10.1089/mdr.2020.0259
  • Bai AD, Lo CK, Komorowski AS, et al. Staphylococcus aureus bacteremia mortality across country income groups: a secondary analysis of a systematic review. Int J Infect Dis. 2022;122:405–411. doi:10.1016/j.ijid.2022.06.026
  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020–00018. doi:10.1128/CMR.00020-18
  • Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. doi:10.3389/fcimb.2020.00107
  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins. 2018;10(6):252. doi:10.3390/toxins10060252
  • Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14(4):385–393. doi:10.1136/jcp.14.4.385
  • Ayliffe GA. The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 1997;24(Suppl 1):S74–S79. doi:10.1093/clinids/24.Supplement_1.S74
  • Li G, Walker MJ, De Oliveira DMP. Vancomycin resistance in enterococcus and Staphylococcus aureus. Microorganisms. 2022;11:1. doi:10.3390/microorganisms11010024
  • Wu Q, Sabokroo N, Wang Y, Hashemian M, Karamollahi S, Kouhsari E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob Resist Infect Control. 2021;10(1):101. doi:10.1186/s13756-021-00967-y
  • Li S, Sun S, Yang C, et al. The changing pattern of population structure of Staphylococcus aureus from bacteremia in China from 2013 to 2016: ST239-030-MRSA replaced by ST59-t437. Front Microbiol. 2018;9:332. doi:10.3389/fmicb.2018.00332
  • Xiao M, Wang H, Zhao Y, et al. National surveillance of methicillin-resistant Staphylococcus aureus in China highlights a still-evolving epidemiology with 15 novel emerging multilocus sequence types. J Clin Microbiol. 2013;51(11):3638–3644. doi:10.1128/JCM.01375-13
  • Wang B, Xu Y, Zhao H, et al. Methicillin-resistant Staphylococcus aureus in China: a multicentre longitudinal study and whole-genome sequencing. Emerg Microbes Infect. 2022;11(1):532–542. doi:10.1080/22221751.2022.2032373
  • Bai Z, Chen M, Lin Q, et al. Identification of methicillin-resistant Staphylococcus aureus from methicillin-sensitive Staphylococcus aureus and molecular characterization in Quanzhou, China. Front Cell Dev Biol. 2021;9:629681. doi:10.3389/fcell.2021.629681
  • Li X, Huang T, Xu K, Li C, Li Y. Molecular characteristics and virulence gene profiles of Staphylococcus aureus isolates in Hainan, China. BMC Infect Dis. 2019;19(1):873. doi:10.1186/s12879-019-4547-5
  • Thiede SN, Snitkin ES, Trick W, et al. Genomic epidemiology suggests community origins of healthcare-associated USA300 methicillin-resistant Staphylococcus aureus. J Infect Dis. 2022;226(1):157–166. doi:10.1093/infdis/jiac056
  • Grundstad MLPC, Kwiecinski JM, Kavanaugh JS, et al. Quorum sensing, virulence, and antibiotic resistance of USA100 methicillin-resistant Staphylococcus aureus isolates. mSphere. 2019;4(4):e00553–19. doi:10.1128/mSphere.00553-19
  • Dyzenhaus S, Sullivan MJ, Alburquerque B, et al. MRSA lineage USA300 isolated from bloodstream infections exhibit altered virulence regulation. Cell Host Microbe. 2023;31(2):228–242e228. doi:10.1016/j.chom.2022.12.003
  • Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23:15. doi:10.3390/ijms23158088
  • Fuzi M, Rodriguez Bano J, Toth A. Global evolution of pathogenic bacteria with extensive use of fluoroquinolone agents. Front Microbiol. 2020;11:271. doi:10.3389/fmicb.2020.00271
  • He L, Zheng HX, Wang Y, et al. Detection and analysis of methicillin-resistant human-adapted sequence type 398 allows insight into community-associated methicillin-resistant Staphylococcus aureus evolution. Genome Med. 2018;10(1):5. doi:10.1186/s13073-018-0514-9
  • van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: an update. Infect Dis Clin North Am. 2020;34(4):709–722. doi:10.1016/j.idc.2020.08.002
  • Sansom SEBE, Thiede SN, Hota B, et al. Genomic update of phenotypic prediction rule for methicillin-resistant Staphylococcus aureus (MRSA) USA300 discloses jail transmission networks with increased resistance. Microbiol Spectr. 2021;9(1):e0037621. doi:10.1128/Spectrum
  • Chen Y, Sun L, Wu D, Wang H, Ji S, Yu Y. Using core-genome multilocus sequence typing to monitor the changing epidemiology of methicillin-resistant Staphylococcus aureus in a teaching hospital. Clin Infect Dis. 2018;67(suppl_2):S241–S248. doi:10.1093/cid/ciy644
  • Ahmad NI, Yean Yean C, Foo PC, Mohamad Safiee AW, Hassan SA. Prevalence and association of Panton-Valentine Leukocidin gene with the risk of sepsis in patients infected with methicillin resistant Staphylococcus aureus. J Infect Public Health. 2020;13(10):1508–1512. doi:10.1016/j.jiph.2020.06.018
  • Preeja PP, Kumar SH, Shetty V. Prevalence and characterization of methicillin-resistant Staphylococcus aureus from community- and hospital-associated infections: a tertiary care center study. Antibiotics. 2021;10(2):197. doi:10.3390/antibiotics10020197
  • Nichol KA, Adam HJ, Golding GR, et al. Characterization of MRSA in Canada from 2007 to 2016. J Antimicrob Chemother. 2019;74(Suppl4):iv55–iv63. doi:10.1093/jac/dkz288
  • Crespo-Piazuelo D, Lawlor PG. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir Vet J. 2021;74(1):21. doi:10.1186/s13620-021-00200-7
  • Gajdacs M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics. 2019;8(2):52. doi:10.3390/antibiotics8020052
  • Chen C, Wu F. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonisation and infection among livestock workers and veterinarians: a systematic review and meta-analysis. Occup Environ Med. 2020;oemed-2020–106418. doi:10.1136/oemed-2020-106418
  • Cui S, Li J, Hu C, et al. Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. J Antimicrob Chemother. 2009;64(4):680–683. doi:10.1093/jac/dkp275
  • Chen CJ, Lauderdale TY, Lu CT, et al. Clinical and molecular features of MDR livestock-associated MRSA ST9 with staphylococcal cassette chromosome mecXII in humans. J Antimicrob Chemother. 2018;73(1):33–40. doi:10.1093/jac/dkx357
  • Yu F, Cienfuegos-Gallet AV, Cunningham MH, et al. Molecular evolution and adaptation of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 9. mSystems. 2021;6(3):e0049221. doi:10.1128/mSystems.00492-21
  • Cui M, Li J, Ali T, et al. Emergence of livestock-associated MRSA ST398 from bulk tank milk, China. J Antimicrob Chemother. 2020;75(12):3471–3474. doi:10.1093/jac/dkaa367
  • Li X, Xie L, Huang H, et al. Prevalence of livestock-associated MRSA ST398 in a swine slaughterhouse in Guangzhou, China. Front Microbiol. 2022;13:914764. doi:10.3389/fmicb.2022.914764
  • Gittens-St Hilaire MV, Chase E, Alleyne D. Prevalence, molecular characteristics and antimicrobial susceptibility patterns of MRSA in hospitalized and nonhospitalized patients in Barbados. New Microbes New Infect. 2020;35:100659. doi:10.1016/j.nmni.2020.100659
  • Junnila J, Hirvioja T, Rintala E, et al. Changing epidemiology of methicillin-resistant Staphylococcus aureus in a low endemicity area-new challenges for MRSA control. Eur J Clin Microbiol Infect Dis. 2020;39(12):2299–2307. doi:10.1007/s10096-020-03824-9
  • Chen H, Yin Y, van Dorp L, et al. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med. 2021;13(1):171. doi:10.1186/s13073-021-00992-x
  • Chen F, Yin Y, Chen H, et al. Phenotypic and genomic comparison of Staphylococcus aureus highlight virulence and host adaptation favoring the success of epidemic clones. mSystems. 2022;7(6):e0083122. doi:10.1128/msystems.00831-22
  • Ba X, Matuszewska M, Kalmar L, et al. High-throughput mutagenesis reveals a role for antimicrobial resistance- and virulence-associated mobile genetic elements in Staphylococcus aureus host adaptation. Microbiol Spectr. 2023;11(2):e0421322. doi:10.1128/spectrum.04213-22
  • McClure JA, Lakhundi S, Niazy A, et al. Staphylococcus aureus ST59: concurrent but separate evolution of North American and East Asian Lineages. Front Microbiol. 2021;12:631845. doi:10.3389/fmicb.2021.631845
  • Jin Y, Zhou W, Zhan Q, et al. Genomic epidemiology and characterization of methicillin-resistant Staphylococcus aureus from bloodstream infections in China. mSystems. 2021;6(6):e0083721. doi:10.1128/mSystems.00837-21
  • Howden BP, Giulieri SG, Wong Fok Lung T, et al. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol. 2023:1–16. doi:10.1038/s41579-023-00852-y
  • Abou Shady HM, Bakr AE, Hashad ME, Alzohairy MA. Staphylococcus aureus nasal carriage among outpatients attending primary health care centers: a comparative study of two cities in Saudi Arabia and Egypt. Braz J Infect Dis. 2015;19(1):68–76. doi:10.1016/j.bjid.2014.09.005
  • Coombs GW, Baines SL, Howden BP, Swenson KM, O’Brien FG. Diversity of bacteriophages encoding Panton-Valentine leukocidin in temporally and geographically related Staphylococcus aureus. PLoS One. 2020;15(2):e0228676. doi:10.1371/journal.pone.0228676
  • Pardo L, Giudice G, Mota MI, et al. Phenotypic and genotypic characterization of oxacillin-susceptible and mecA positive Staphylococcus aureus strains isolated in Uruguay. Rev Argent Microbiol. 2022;54:S0325-7541(0322)00030–X. doi:10.1016/j.ram.2022.05.004
  • Liu JL, Li TM, Zhong N, et al. Current status of oxacillin-susceptible mecA-positive Staphylococcus aureus infection in Shanghai, China: a multicenter study. J Microbiol Immunol Infect. 2021;54(6):1070–1077. doi:10.1016/j.jmii.2020.07.021
  • Song Y, Cui L, Lv Y, Li Y, Xue F. Characterisation of clinical isolates of oxacillin-susceptible mecA-positive Staphylococcus aureus in China from 2009 to 2014. J Glob Antimicrob Resist. 2017;11:1–3. doi:10.1016/j.jgar.2017.05.009
  • Hryniewicz MM, Garbacz K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) - a more common problem than expected? J Med Microbiol. 2017;66(10):1367–1373. doi:10.1099/jmm.0.000585
  • Nomura R, Nakaminami H, Takasao K, et al. A class A beta-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J Glob Antimicrob Resist. 2020;22:244–247. doi:10.1016/j.jgar.2020.03.002
  • Zehra A, Gulzar M, Singh R, Kaur S, Gill JPS. Comparative analysis of methicillin-resistant Staphylococcus aureus (MRSA) and borderline oxacillin resistant Staphylococcus aureus (BORSA) in community and food of animal origin. FEMS Microbiol Lett. 2020;367(23):fnaa201. doi:10.1093/femsle/fnaa201
  • Konstantinovski MM, Veldkamp KE, Lavrijsen APM, et al. Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing. J Med Microbiol. 2021;70(7):001384. doi:10.1099/jmm.0.001384
  • Uehara Y. Current status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics. 2022;11(1):86. doi:10.3390/antibiotics11010086
  • Rolo J, Worning P, Nielsen JB, et al. Evolutionary origin of the Staphylococcal Cassette Chromosome mec (SCCmec). Antimicrob Agents Chemother. 2017;61(6):e02302–e02316. doi:10.1128/AAC.02302-16
  • Boundy S, Safo MK, Wang L, et al. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome Cassette mec (SCCmec) insertion site. J Biol Chem. 2013;288(1):132–140. doi:10.1074/jbc.M112.385138
  • Yamaguchi T, Ono D, Sato A. Staphylococcal Cassette Chromosome mec (SCCmec) analysis of MRSA. Methods Mol Biol. 2020;2069:59–78. doi:10.1007/978-1-4939-9849-4_4
  • Urushibara N, Aung MS, Kawaguchiya M, Kobayashi N. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J Antimicrob Chemother. 2020;75(1):46–50. doi:10.1093/jac/dkz406
  • Wang L, Ahmed MH, Safo MK, Archer GL. A plasmid-borne system to assess the excision and integration of Staphylococcal Cassette Chromosome mec Mediated by CcrA and CcrB. J Bacteriol. 2015;197(17):2754–2761. doi:10.1128/JB.00078-15
  • Xiao J, Huang J, Xue X, et al. Novel cassette chromosome recombinases CcrA8B9 catalyse the excision and integration of the staphylococcal cassette chromosome mec element. J Antimicrob Chemother. 2023;78(2):440–444. doi:10.1093/jac/dkac410
  • Zhang S, Ma R, Liu X, Zhang X, Sun B. Modulation of ccrAB expression and SCCmec excision by an inverted repeat element and SarS in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2015;59(10):6223–6232. doi:10.1128/AAC.01041-15
  • Zhang S, Shu X, Sun B. SigmaB regulates ccrAB expression and SCCmec excision in methicillin-resistant Staphylococcus aureus. Int J Med Microbiol. 2016;306(6):406–414. doi:10.1016/j.ijmm.2016.05.008
  • Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol. 2021;115(4):554–573. doi:10.1111/mmi.14623
  • Clark LC, Atkin KE, Whelan F, et al. Staphylococcal Periscope proteins Aap, SasG, and Pls project noncanonical legume-like lectin adhesin domains from the bacterial surface. J Biol Chem. 2023;299(3):102936. doi:10.1016/j.jbc.2023.102936
  • Li D, Li XY, Schwarz S, et al. Tn6674 is a novel enterococcal optrA-carrying multiresistance transposon of the Tn554 family. Antimicrob Agents Chemother. 2019;63(9):e00809–e00819. doi:10.1128/AAC.00809-19
  • Chang SC, Lin LC, Ge MC, Liu TP, Lu JJ. Characterization of a novel, type II staphylococcal cassette chromosome mec element from an endemic oxacillin-resistant Staphylococcus lugdunensis clone in a hospital setting. J Antimicrob Chemother. 2019;74(8):2162–2165. doi:10.1093/jac/dkz189
  • Sarrou S, Malli E, Tsilipounidaki K, et al. MLSB-resistant Staphylococcus aureus in central Greece: rate of resistance and molecular characterization. Microb Drug Resist. 2019;25(4):543–550. doi:10.1089/mdr.2018.0259
  • Kruger H, Ji X, Wang Y, et al. Identification of Tn553, a novel Tn554-related transposon that carries a complete blaZ-blaR1-blaI beta-lactamase operon in Staphylococcus aureus. J Antimicrob Chemother. 2021;76(10):2733–2735. doi:10.1093/jac/dkab210
  • Zhu Y, Zhang W, Wang C, et al. Identification of a novel optrA-harbouring transposon, Tn6823, in Staphylococcus aureus. J Antimicrob Chemother. 2020;75(11):3395–3397. doi:10.1093/jac/dkaa323
  • Ji X, Kruger H, Wang Y, et al. Tn560, a novel Tn554 family transposon from porcine methicillin-resistant Staphylococcus aureus ST398, carries a multiresistance gene cluster comprising a Novel spc gene variant and the Genes lsa(E) and lnu(B). Antimicrob Agents Chemother. 2022;66(4):e0194721. doi:10.1128/aac.01947-21
  • Ross K, Varani AM, Snesrud E, et al. TnCentral: a prokaryotic transposable element database and web portal for transposon analysis. mBio. 2021;12(5):e0206021. doi:10.1128/mBio.02060-21
  • Mir-Sanchis I, Pigli YZ, Rice PA. Crystal structure of an unusual single-stranded DNA-binding protein encoded by Staphylococcal Cassette Chromosome elements. Structure. 2018;26(8):1144–1150 e1143. doi:10.1016/j.str.2018.05.016
  • Bebel A, Walsh MA, Mir-Sanchis I, Rice PA. A novel DNA primase-helicase pair encoded by SCCmec elements. Elife. 2020;9:e55478. doi:10.7554/eLife.55478
  • Maree M, Thi Nguyen LT, Ohniwa RL, Higashide M, Msadek T, Morikawa K. Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms. Nat Commun. 2022;13(1):2477. doi:10.1038/s41467-022-29877-2
  • Miragaia M. Factors contributing to the evolution of mecA-mediated beta-lactam resistance in Staphylococci: update and new insights from Whole Genome Sequencing (WGS). Front Microbiol. 2018;9:2723. doi:10.3389/fmicb.2018.02723
  • Rolo J, Worning P, Boye Nielsen J, et al. Evidence for the evolutionary steps leading to mecA-mediated beta-lactam resistance in staphylococci. PLoS Genet. 2017;13(4):e1006674. doi:10.1371/journal.pgen.1006674
  • Acebron I, Chang M, Mobashery S, Hermoso JA. The allosteric site for the nascent cell wall in penicillin-binding protein 2a: an achilles’ heel of methicillin-resistant Staphylococcus aureus. Curr Med Chem. 2015;22(14):1678–1686. doi:10.2174/0929867322666150311150215
  • Correa Argondizzo AP, Saraiva FB, Almeida M, Nunes Peres AM, Moreno Senna JP. Evaluation of the PBP2 transglycosylase region of Staphylococcus aureus as a target for immunotherapeutic approaches. Microb Pathog. 2021;157:105000. doi:10.1016/j.micpath.2021.105000
  • Monteiro JM, Covas G, Rausch D, et al. The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity. Sci Rep. 2019;9(1):5010. doi:10.1038/s41598-019-41461-1
  • Mikkelsen K, Sirisarn W, Alharbi O, et al. The novel membrane-associated auxiliary factors AuxA and AuxB modulate beta-lactam resistance in MRSA by stabilizing lipoteichoic acids. Int J Antimicrob Agents. 2021;57(3):106283. doi:10.1016/j.ijantimicag.2021.106283
  • Milheirico C, Tomasz A, de Lencastre H. Impact of the stringent stress response on the expression of methicillin resistance in Staphylococcaceae strains carrying mecA, mecA1 and mecC. Antibiotics. 2022;11(2):255. doi:10.3390/antibiotics11020255
  • Alves M, Penna B, Pereira RFA, et al. First report of meticillin-resistant Staphylococcus aureus harboring mecC gene in milk samples from cows with mastitis in southeastern Brazil. Braz J Microbiol. 2020;51(4):2175–2179. doi:10.1007/s42770-020-00385-z
  • Bietrix J, Kolenda C, Sapin A, et al. Persistence and diffusion of mecC-positive CC130 MRSA isolates in dairy farms in Meurthe-et-Moselle County (France). Front Microbiol. 2019;10:47. doi:10.3389/fmicb.2019.00047
  • Kim C, Milheirico C, Gardete S, et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the beta-lactam-resistant phenotype. J Biol Chem. 2012;287(44):36854–36863. doi:10.1074/jbc.M112.395962
  • Schwendener S, Perreten V. The bla and mec families of beta-lactam resistance genes in the genera Macrococcus, Mammaliicoccus and Staphylococcus: an in-depth analysis with emphasis on Macrococcus. J Antimicrob Chemother. 2022;77(7):1796–1827. doi:10.1093/jac/dkac107
  • Arede P, Milheirico C, de Lencastre H, Oliveira DC. The anti-repressor MecR2 promotes the proteolysis of the mecA repressor and enables optimal expression of beta-lactam resistance in MRSA. PLoS Pathog. 2012;8(7):e1002816. doi:10.1371/journal.ppat.1002816
  • Rocha GD, Nogueira JF, Gomes Dos Santos MV, et al. Impact of polymorphisms in blaZ, blaR1 and blaI genes and their relationship with beta-lactam resistance in S. aureus strains isolated from bovine mastitis. Microb Pathog. 2022;165:105453. doi:10.1016/j.micpath.2022.105453
  • Pence MA, Haste NM, Meharena HS, et al. Beta-lactamase repressor Blai modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS One. 2015;10(8):e0136605. doi:10.1371/journal.pone.0136605
  • Fisher JF, Mobashery S. beta-lactams against the fortress of the gram-positive Staphylococcus aureus bacterium. Chem Rev. 2021;121(6):3412–3463. doi:10.1021/acs.chemrev.0c01010
  • Boonsiri T, Watanabe S, Tan XE, et al. Identification and characterization of mutations responsible for the beta-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci Rep. 2020;10(1):16907. doi:10.1038/s41598-020-73796-5
  • Sun L, Xu J, Wang W, He F. Emergence of vanA-type vancomycin-resistant enterococcus faecium ST 78 strain with a rep2-type plasmid carrying a Tn1546-like element isolated from a urinary tract infection in China. Infect Drug Resist. 2020;13:949–955. doi:10.2147/IDR.S247569
  • Arredondo-Alonso S, Top J, Corander J, Willems RJL, Schurch AC. Mode and dynamics of vanA-type vancomycin resistance dissemination in Dutch hospitals. Genome Med. 2021;13(1):9. doi:10.1186/s13073-020-00825-3
  • McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269–281.
  • Vimberg V, Zieglerová L, Buriánková K, Branny P, Balíková Novotná G. VanZ reduces the binding of lipoglycopeptide antibiotics to Staphylococcus aureus and Streptococcus pneumoniae cells. Front Microbiol. 2020;11:566. doi:10.3389/fmicb.2020.00566
  • Maciunas LJ, Porter N, Lee PJ, Gupta K, Loll PJ. Structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states. Acta Crystallogr D Struct Biol. 2021;77(Pt 8):1027–1039. doi:10.1107/S2059798321006288
  • Lockey C, Edwards RJ, Roper DI, Dixon AM. The extracellular domain of two-component system sensor kinase VanS from Streptomyces coelicolor binds vancomycin at a newly identified binding site. Sci Rep. 2020;10(1):5727. doi:10.1038/s41598-020-62557-z
  • Upton EC, Maciunas LJ, Loll PJ. Vancomycin does not affect the enzymatic activities of purified VanSA. PLoS One. 2019;14(1):e0210627. doi:10.1371/journal.pone.0210627
  • Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol. 2019;309(1):1–12. doi:10.1016/j.ijmm.2018.11.002
  • Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017;104(3):365–376. doi:10.1111/mmi.13634
  • Hosseini M, Shapouri Moghaddam A, Derakhshan S, et al. Correlation between biofilm formation and antibiotic resistance in MRSA and MSSA isolated from clinical samples in Iran: a systematic review and meta-analysis. Microb Drug Resist. 2020;26(9):1071–1080. doi:10.1089/mdr.2020.0001
  • Tao Q, Wu Q, Zhang Z, et al. Meta-analysis for the global prevalence of foodborne pathogens exhibiting antibiotic resistance and biofilm formation. Front Microbiol. 2022;13:906490. doi:10.3389/fmicb.2022.906490
  • Otto M, Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI. Staphylococcal biofilms. Microbiol Spectr. 2018;6(4). doi:10.1128/microbiolspec.GPP3-0023-2018
  • Yan J, Bassler BL. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 2019;26(1):15–21. doi:10.1016/j.chom.2019.06.002
  • Manasherob R, Mooney JA, Lowenberg DW, Bollyky PL, Amanatullah DF. Tolerant small-colony variants form prior to resistance within a Staphylococcus aureus biofilm based on antibiotic selective pressure. Clin Orthop Relat Res. 2021;479(7):1471–1481. doi:10.1097/CORR.0000000000001740
  • Silva V, Correia E, Pereira JE, et al. Biofilm formation of Staphylococcus aureus from pets, livestock, and wild animals: relationship with clonal lineages and antimicrobial resistance. Antibiotics. 2022;11(6):772. doi:10.3390/antibiotics11060772
  • Hiltunen AK, Savijoki K, Nyman TA, et al. Structural and functional dynamics of Staphylococcus aureus biofilms and biofilm matrix proteins on different clinical materials. Microorganisms. 2019;7(12):584. doi:10.3390/microorganisms7120584
  • Silva V, Almeida L, Gaio V, et al. Biofilm formation of multidrug-resistant MRSA strains isolated from different types of human infections. Pathogens. 2021;10(8):970. doi:10.3390/pathogens10080970
  • Svarcova V, Zdenkova K, Sulakova M, Demnerova K, Pazlarova J. Contribution to determination of extracellular DNA origin in the biofilm matrix. J Basic Microbiol. 2021;61(7):652–661. doi:10.1002/jobm.202100090
  • Balcazar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6:1216. doi:10.3389/fmicb.2015.01216
  • Hassanzadeh S, Ganjloo S, Pourmand MR, Mashhadi R, Ghazvini K. Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; A systematic review. Microb Pathog. 2020;139:103850. doi:10.1016/j.micpath.2019.103850
  • Abdel-Karim SAM, El-Ganiny AMA, El-Sayed MA, Abbas HAA. Promising FDA-approved drugs with efflux pump inhibitory activities against clinical isolates of Staphylococcus aureus. PLoS One. 2022;17(7):e0272417. doi:10.1371/journal.pone.0272417
  • Kumar S, Lekshmi M, Parvathi A, Ojha M, Wenzel N, Varela MF. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps. Microorganisms. 2020;8(2):266. doi:10.3390/microorganisms8020266
  • Lekshmi M, Ammini P, Adjei J, et al. Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiol. 2018;4(1):1–18. doi:10.3934/microbiol.2018.1.1
  • Mirza ZM, Kumar A, Kalia NP, Zargar A, Khan IA. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J Med Microbiol. 2011;60(Pt 10):1472–1478. doi:10.1099/jmm.0.033167-0
  • Dashtbani-Roozbehani A, Brown MH. Efflux pump mediated antimicrobial resistance by Staphylococci in health-related environments: challenges and the quest for inhibition. Antibiotics. 2021;10(12):1502. doi:10.3390/antibiotics10121502
  • Mahey N, Tambat R, Chandal N, Verma DK, Thakur KG, Nandanwar H. Repurposing approved drugs as fluoroquinolone potentiators to overcome efflux pump resistance in Staphylococcus aureus. Microbiol Spectr. 2021;9(3):e0095121. doi:10.1128/Spectrum.00951-21
  • Mahey N, Tambat R, Verma DK, Chandal N, Thakur KG, Nandanwar H. Antifungal azoles as tetracycline resistance modifiers in Staphylococcus aureus. Appl Environ Microbiol. 2021;87(15):e0015521. doi:10.1128/AEM.00155-21
  • Majumder P, Khare S, Athreya A, Hussain N, Gulati A, Penmatsa A. Dissection of protonation sites for antibacterial recognition and transport in QacA, a multi-drug efflux transporter. J Mol Biol. 2019;431(11):2163–2179. doi:10.1016/j.jmb.2019.03.015
  • MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Chang. 2018;8(6):510–514. doi:10.1038/s41558-018-0161-6
  • Tan S, Cho K, Nodwell JR. A defect in cell wall recycling confers antibiotic resistance and sensitivity in Staphylococcus aureus. J Biol Chem. 2022;298(10):102473. doi:10.1016/j.jbc.2022.102473
  • Hort M, Bertsche U, Nozinovic S, et al. The role of β-glycosylated wall teichoic acids in the reduction of vancomycin susceptibility in vancomycin-intermediate Staphylococcus aureus. Microbiol Spectr. 2021;9(2):e0052821. doi:10.1128/Spectrum.00528-21
  • Danikowski KM, Cheng T. Alkaline phosphatase activity of Staphylococcus aureus grown in biofilm and suspension cultures. Curr Microbiol. 2018;75(9):1226–1230. doi:10.1007/s00284-018-1514-0
  • Huemer M, Mairpady Shambat S, Hertegonne S, et al. Serine-threonine phosphoregulation by PknB and Stp contributes to quiescence and antibiotic tolerance in Staphylococcus aureus. Sci Signal. 2023;16(766):eabj8194. doi:10.1126/scisignal.abj8194
  • Assis LM, Nedeljkovic M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat. 2017;31:1–14. doi:10.1016/j.drup.2017.03.001
  • Parsons JB, Westgeest AC, Conlon BP, Fowler VG. Persistent methicillin-resistant Staphylococcus aureus bacteremia: host, pathogen, and treatment. Antibiotics. 2023;12(3):455. doi:10.3390/antibiotics12030455
  • Tong SYC, Lye DC, Yahav D, et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial. JAMA. 2020;323(6):527–537. doi:10.1001/jama.2020.0103
  • Rose W, Fantl M, Geriak M, Nizet V, Sakoulas G. Current paradigms of combination therapy in Methicillin-Resistant Staphylococcus aureus (MRSA) bacteremia: does it work, which combination, and for which patients? Clin Infect Dis. 2021;73(12):2353–2360. doi:10.1093/cid/ciab452
  • Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. doi:10.3390/ijms222111401
  • Xiang YZ, Wu G, Yang LY, et al. Antibacterial effect of bacteriocin XJS01 and its application as antibiofilm agents to treat multidrug-resistant Staphylococcus aureus infection. Int J Biol Macromol. 2022;196:13–22. doi:10.1016/j.ijbiomac.2021.11.136
  • Mohanta YK, Chakrabartty I, Mishra AK, et al. Nanotechnology in combating biofilm: a smart and promising therapeutic strategy. Front Microbiol. 2022;13:1028086. doi:10.3389/fmicb.2022.1028086
  • Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:566325. doi:10.3389/fmicb.2020.566325
  • Lamut A, Peterlin Masic L, Kikelj D, Tomasic T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev. 2019;39(6):2460–2504. doi:10.1002/med.21591