222
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The First Report of Escherichia coli and Klebsiella pneumoniae Strains That Produce Both NDM-5 and OXA-181 in Jiangsu Province, China

ORCID Icon, &
Pages 3245-3255 | Received 28 Mar 2023, Accepted 18 May 2023, Published online: 24 May 2023

References

  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-09
  • Li X, Zhao D, Li W, Sun J, Zhang X. Enzyme inhibitors: the best strategy to tackle superbug NDM-1 and its variants. Int J Mol Sci. 2021;23(1):197. doi:10.3390/ijms23010197
  • Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob Agents Chemother. 2011;55(12):5952–5954. doi:10.1128/AAC.05108-11
  • Ramadan H, Gupta SK, Sharma P, et al. Circulation of emerging NDM-5-producing Escherichia coli among humans and dogs in Egypt. Zoonoses Public Health. 2020;67(3):324–329. doi:10.1111/zph.12676
  • Hong JS, Song W, Jeong SH. Molecular characteristics of NDM-5-producing Escherichia coli from a cat and a dog in South Korea. Microb Drug Resist. 2020;26(8):1005–1008. doi:10.1089/mdr.2019.0382
  • Alba P, Taddei R, Cordaro G, et al. Carbapenemase IncF-borne blaNDM-5 gene in the E. coli ST167 high-risk clone from canine clinical infection, Italy. Vet Microbiol. 2021;256:109045. doi:10.1016/j.vetmic.2021.109045
  • Tian D, Wang B, Zhang H, et al. Dissemination of the bla NDM-5 gene via IncX3-type plasmid among Enterobacteriaceae in children. mSphere. 2020;5(1):e00699–19. doi:10.1128/mSphere.00699-19
  • Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22. doi:10.1128/AAC.48.1.15-22.2004
  • Pitout J, Peirano G, Kock MM, Strydom K-A, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. 2019;33(1):e00102–19. doi:10.1128/CMR.00102-19
  • Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob Agents Chemother. 2011;55(3):1274–1278. doi:10.1128/AAC.01497-10
  • Izdebski R, Baraniak A, Zabicka D, et al. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013–January 2017. J Antimicrob Chemother. 2018;73(3):620–625. doi:10.1093/jac/dkx457
  • Fuga B, Ferreira ML, Cerdeira LT, et al. Novel small IncX3 plasmid carrying the blaKPC-2 gene in high-risk Klebsiella pneumoniae ST11/CG258. Diagn Microbiol Infect Dis. 2020;96(2):114900. doi:10.1016/j.diagmicrobio.2019.114900
  • Zhu W, Wang X, Qin J, Liang W, Shen Z. Dissemination and stability of the blaNDM-5-carrying IncX3-type plasmid among multiclonal Klebsiella pneumoniae isolates. mSphere. 2020;5(6):e00917–20. doi:10.1128/mSphere.00917-20
  • Liu Y, Feng Y, Wu W, et al. First report of OXA-181-producing Escherichia coli in china and characterization of the isolate using whole-genome sequencing. Antimicrob Agents Chemother. 2015;59(8):5022–5025. doi:10.1128/AAC.00442-15
  • Qin S, Cheng J, Wang P, Feng X, Liu HM. Early emergence of OXA-181-producing Escherichia coli ST410 in China. J Glob Antimicrob Resist. 2018;15:215–218. doi:10.1016/j.jgar.2018.06.017
  • Liu C, Fang Y, Zeng Y, et al. First report of OXA-181-producing Klebsiella pneumoniae in China. Infect Drug Resist. 2020;13:995–998. doi:10.2147/IDR.S237793
  • Gamal D, Fernández-Martínez M, El-Defrawy I, Ocampo-Sosa AA, Martínez-Martínez L. First identification of NDM-5 associated with OXA-181 in Escherichia coli from Egypt. Emerg Microbes Infect. 2016;5(4):e30. doi:10.1038/emi.2016.24
  • Rojas LJ, Hujer AM, Rudin SD, et al. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas. Antimicrob Agents Chemother. 2017;61(7):e00454–17. doi:10.1128/AAC.00454-17
  • Okanda T, Haque A, Koshikawa T, et al. Characteristics of carbapenemase-producing Klebsiella pneumoniae isolated in the intensive care unit of the largest tertiary hospital in Bangladesh. Front Microbiol. 2021;11:612020. doi:10.3389/fmicb.2020.612020
  • Marchetti VM, Bitar I, Mercato A, et al. Complete nucleotide sequence of plasmids of two Escherichia coli strains carrying blaNDM–5 and blaNDM–5 and blaOXA–181 from the same patient. Front Microbiol. 2020;10:3095. doi:10.3389/fmicb.2019.03095
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2022.
  • European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. Växjö, Sweden: European Committee on Antimicrobial Susceptibility Testing; 2022.
  • Rogers BA, Sidjabat HE, Silvey A, et al. Treatment options for New Delhi metallo-beta-lactamase-harboring Enterobacteriaceae. Microb Drug Resist. 2013;19(2):100–103. doi:10.1089/mdr.2012.0063
  • Wang X, Wang Y, Zhou Y, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7(1):122. doi:10.1038/s41426-018-0124-z
  • Nour I, Eldegla HE, Nasef N, Shouman B, Abdel-Hady H, Shabaan AE. Risk factors and clinical outcomes for carbapenem-resistant Gram-negative late-onset sepsis in a neonatal intensive care unit. J Hosp Infect. 2017;97(1):52–58. doi:10.1016/j.jhin.2017.05.025
  • Chiotos K, Hayes M, Gerber JS, Tamma PD. Treatment of carbapenem-resistant Enterobacteriaceae infections in Children. J Pediatric Infect Dis Soc. 2020;9(1):56–66. doi:10.1093/jpids/piz085
  • Montagnani C, Tersigni C, D’Arienzo S, et al. Resistance patterns from urine cultures in children aged 0 to 6 years: implications for empirical antibiotic choice. Infect Drug Resist. 2021;14:2341–2348. doi:10.2147/IDR.S293279
  • Li S, Chen Z, Huang L, et al. Safety of quinolones in children: a systematic review and meta-analysis. Paediatr Drugs. 2022;24(5):447–464. doi:10.1007/s40272-022-00513-2
  • Rzeczkowska M, Wołkowicz T, Zacharczuk K, et al. Draft genome sequence of an Escherichia coli ST410 isolate co-harbouring blaCTX-M-15, blaCMY-42, blaOXA-1, aac(3)-IIa and aac(6’)-Ib-cr genes with gyrA and parC mutations isolated from a paediatric patient in Poland. J Glob Antimicrob Resist. 2019;16:120–122. doi:10.1016/j.jgar.2018.11.024
  • Roer L, Overballe-Petersen S, Hansen F, et al. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere. 2018;3(4):e00337–18. doi:10.1128/mSphere.00337-18
  • Piazza A, Comandatore F, Romeri F, et al. First report of an ST410 OXA-181 and CTX-M-15 coproducing Escherichia coli clone in Italy: a whole-genome sequence characterization. Microb Drug Resist. 2018;24(8):1207–1209. doi:10.1089/mdr.2017.0366
  • Kim JS, Yu JK, Jeon SJ, et al. Dissemination of an international high-risk clone of Escherichia coli ST410 co-producing NDM-5 and OXA-181 carbapenemases in Seoul, Republic of Korea. Int J Antimicrob Agents. 2021;58(6):106448. doi:10.1016/j.ijantimicag.2021.106448
  • Zhong Y, Guo S, Schlundt J, Kwa AL. Identification and genomic characterization of a blaNDM-5-harbouring MDR plasmid in a carbapenem-resistant Escherichia coli ST410 strain isolated from a natural water environmental source. JAC Antimicrob Resist. 2022;4(4):dlac071.
  • Devanga Ragupathi NK, Vasudevan K, Venkatesan M, Veeraraghavan B. First Indian report on B4/H24RxC ST410 multidrug-resistant Escherichia coli from bloodstream infection harbouring blaOXA-181 and blaCTX-M-15. J Glob Antimicrob Resist. 2020;22:568–570. doi:10.1016/j.jgar.2020.06.013
  • Gu J-N, Chen L, Weng X-B, Yang X-Y, Pan D-M. Clinical and microbiological characteristics of a community-acquired carbapenem-resistant Escherichia coli ST410 isolate harbouring blaNDM-5-encoding IncX3-type plasmid from blood. Front Med. 2021;8:658058. doi:10.3389/fmed.2021.658058
  • Negeri AA, Mamo H, Gurung JM, et al. Antimicrobial resistance profiling and molecular epidemiological analysis of extended spectrum β-lactamases produced by extraintestinal invasive Escherichia coli isolates from Ethiopia: the presence of international high-risk clones ST131 and ST410 revealed. Front Microbiol. 2021;12:706846. doi:10.3389/fmicb.2021.706846
  • Chen L, Peirano G, Kreiswirth BN, Devinney R, Pitout JDD. Acquisition of genomic elements were pivotal for the success of Escherichia coli ST410. J Antimicrob Chemother. 2022;77(12):3399–3407. doi:10.1093/jac/dkac329
  • Magaña-Lizárraga JA, Gómez-Gil B, Rendón-Maldonado JG, Delgado-Vargas F, Vega-López IF, Báez-Flores ME. Genomic profiling of antibiotic-resistant Escherichia coli isolates from surface water of agricultural drainage in North-Western Mexico: detection of the international high-risk lineages ST410 and ST617. Microorganisms. 2022;10(3):662.
  • Furlan J, Gonzalez I, Ramos PL, Stehling EG. International high-risk clone of multidrug-resistant CTX-M-8-producing Escherichia coli C-ST410 infecting an elephant (Loxodonta africana) in a zoo. J Glob Antimicrob Resist. 2020;22:643–645. doi:10.1016/j.jgar.2020.06.018
  • Ortega-Paredes D, Barba P, Mena-López S, Espinel N, Zurita J. Escherichia coli hyperepidemic clone ST410-A harboring blaCTX-M-15 isolated from fresh vegetables in a municipal market in Quito-Ecuador. Int J Food Microbiol. 2018;280:41–45. doi:10.1016/j.ijfoodmicro.2018.04.037
  • Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115–18. doi:10.1128/CMR.00115-18
  • Varani A, He S, Siguier P, Ross K, Chandler M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA. 2021;12(1):11. doi:10.1186/s13100-021-00239-x
  • Pong CH, Harmer CJ, Ataide SF, Hall RM. An IS 26 variant with enhanced activity. FEMS Microbiol Lett. 2019;366(3):fnz031. doi:10.1093/femsle/fnz031
  • Chowdhury G, Ramamurthy T, Das B, et al. Characterization of NDM-5 carbapenemase-encoding gene (blaNDM-5) – positive multidrug resistant commensal Escherichia coli from diarrheal patients. Infect Drug Resist. 2022;15:3631–3642. doi:10.2147/IDR.S364526
  • Zou H, Berglund B, Wang S, et al. Emergence of blaNDM-1, blaNDM-5, blaKPC-2 and blaIMP-4 carrying plasmids in Raoultella spp. in the environment. Environ Pollut. 2022;306:119437. doi:10.1016/j.envpol.2022.119437
  • Stokes HW, Tomaras C, Parsons Y, Hall RM. The partial 3′-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin. Plasmid. 1993;30(1):39–50. doi:10.1006/plas.1993.1032
  • Lallement C, Pasternak C, Ploy M-C, Jové T. The role of ISCR1-borne POUT promoters in the expression of antibiotic resistance genes. Front Microbiol. 2018;9:2579. doi:10.3389/fmicb.2018.02579
  • Nowrotek M, Kotlarska E, Łuczkiewicz A, Felis E, Sochacki A, Miksch K. The treatment of wastewater containing pharmaceuticals in microcosm constructed wetlands: the occurrence of integrons (int1–2) and associated resistance genes (sul1–3, qacEΔ1). Environ Sci Pollut Res Int. 2017;24(17):15055–15066. doi:10.1007/s11356-017-9079-1