179
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

18β-Glycyrrhetinic Acid Alleviates P. multocida-Induced Vascular Endothelial Inflammation by PARP1-Mediated NF-κB and HMGB1 Signalling Suppression in PIEC Cells

ORCID Icon, , , ORCID Icon, , , , , & show all
Pages 4201-4212 | Received 12 Apr 2023, Accepted 21 Jun 2023, Published online: 29 Jun 2023

References

  • Smith E, Miller E, Aguayo JM, et al. Genomic diversity and molecular epidemiology of Pasteurella multocida. PLoS One. 2021;16(4):e0249138. doi:10.1371/journal.pone.0249138
  • Peng Z, Wang X, Zhou R, et al. Pasteurella multocida: genotypes and genomics. Microbiol Mol Biol Rev. 2019;83(4):e00014–e00019. doi:10.1128/mmbr.00014-19
  • Giordano A, Dincman T, Clyburn BE, Steed LL, Rockey DC. Clinical features and outcomes of Pasteurella multocida infection. Medicine. 2015;94(36):e1285. doi:10.1097/md.0000000000001285
  • Tang X, Zhao Z, Hu J, et al. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J Clin Microbiol. 2009;47(4):951–958. doi:10.1128/jcm.02029-08
  • Zhang B, Ku X, Yu X, et al. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese pig farms from 2013 to 2017. Sci Rep. 2019;9(1):9908. doi:10.1038/s41598-019-45482-8
  • Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev. 2011;12(2):133–148. doi:10.1017/s1466252311000120
  • Lee KE, Jeoung H-Y, Lee J-Y, et al. Phenotypic characterization and random amplified polymorphic DNA (RAPD) analysis of Pasteurella multocida isolated from Korean Pigs. J Vet Med Sci. 2012;74(5):567–573. doi:10.1292/jvms.11-0418
  • Kim J, Kim JW, Oh S-I, et al. Characterisation of Pasteurella multocida isolates from pigs with pneumonia in Korea. BMC Vet Res. 2019;15(1):119. doi:10.1186/s12917-019-1861-5
  • Oh YH, Moon DC, Lee YJ, Hyun BH, Lim SK. Genetic and phenotypic characterization of tetracycline-resistant Pasteurella multocida isolated from pigs. Vet Microbiol. 2019;233:159–163. doi:10.1016/j.vetmic.2019.05.001
  • Peng Z, Wang H, Liang W, et al. A capsule/lipopolysaccharide/MLST genotype D/L6/ST11 of Pasteurella multocida is likely to be strongly associated with swine respiratory disease in China. Arch Microbiol. 2018;200(1):107–118. doi:10.1007/s00203-017-1421-y
  • Oliveira Filho JX, Morés MAZ, Rebellato R, et al. Pathogenic variability among Pasteurella multocida type A isolates from Brazilian pig farms. BMC Vet Res. 2018;14(1):244. doi:10.1186/s12917-018-1565-2
  • Mostaan S, Ghasemzadeh A, Sardari S, et al. Pasteurella multocida vaccine candidates: a systematic review. Avicenna J Med Biotechnol. 2020;12(3):140–147.
  • Rosado MM, Bennici E, Novelli F, Pioli C. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology. 2013;139(4):428–437. doi:10.1111/imm.12099
  • Wang Y, Pleasure D, Deng W, Guo F. Therapeutic potentials of poly (ADP-Ribose) polymerase 1 (PARP1) inhibition in multiple sclerosis and animal models: concept revisiting. Adv Sci. 2022;9(5):e2102853. doi:10.1002/advs.202102853
  • Maluchenko NV, Feofanov AV, Studitsky VM. PARP-1-associated pathological processes: inhibition by natural polyphenols. Int J Mol Sci. 2021;22(21):11441. doi:10.3390/ijms222111441
  • Altmeyer M, Barthel M, Eberhard M, et al. Absence of poly(ADP-ribose) polymerase 1 delays the onset of Salmonella enterica serovar typhimurium-induced gut inflammation. Infect Immun. 2010;78(8):3420–3431. doi:10.1128/iai.00211-10
  • Ding Y, Brand E, Wang W, Zhao Z. Licorice: resources, applications in ancient and modern times. J Ethnopharmacol. 2022;298:115594. doi:10.1016/j.jep.2022.115594
  • Kowalska A, Kalinowska-Lis U. 18β-Glycyrrhetinic acid: its core biological properties and dermatological applications. Int J Cosmet Sci. 2019;41(4):325–331. doi:10.1111/ics.12548
  • Rao C, Hong Z, Yao Y, Zheng G, Wang S. 18-beta-glycyrrhetinic acid protects against Staphylococcus aureus infection by regulating the NF-κB pathway. Indian J Pharm Educ. 2019;53(2s):s151–s158. doi:10.5530/ijper.53.2s.60
  • Cao D, Jiang J, You L, et al. The protective effects of 18 β-glycyrrhetinic acid on Helicobacter pylori -infected gastric mucosa in Mongolian gerbils. Biomed Res Int. 2016;2016:4943793. doi:10.1155/2016/4943793
  • Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38(Web Server issue):W609–W614. doi:10.1093/nar/gkq300
  • Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi:10.1093/nar/gkz382
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. doi:10.1186/1758-2946-6-13
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Waterhouse A, Bertoni M, Bienert S, et al. Swiss-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi:10.1093/nar/gky427
  • LLC, S. The {PyMOL} molecular graphics system Version 1.80 LLC, New York, NY; 2015.
  • Dayao DA, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. Vet Microbiol. 2014;171(1–2):232–235. doi:10.1016/j.vetmic.2014.03.014
  • Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med. 2022;144:105389. doi:10.1016/j.compbiomed.2022.105389
  • Zhang JN, Ma Y, Wei X-Y, et al. Remifentanil protects against lipopolysaccharide-induced inflammation through PARP-1/NF- κ B signaling pathway. Mediators Inflamm. 2019;2019:3013716. doi:10.1155/2019/3013716
  • Noguchi T, Sekiguchi Y, Kudoh Y, et al. Gefitinib initiates sterile inflammation by promoting IL-1β and HMGB1 release via two distinct mechanisms. Cell Death Dis. 2021;12(1):49. doi:10.1038/s41419-020-03335-7
  • Dong N, Li X, Xue C, et al. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway. J Cell Physiol. 2020;235(7–8):5525–5540. doi:10.1002/jcp.29452
  • Liang Y, Hou C, Kong J, et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem. 2015;405(1–2):63–71. doi:10.1007/s11010-015-2396-0
  • Chen Z, Chen Y, Pan L, et al. Dachengqi decoction attenuates inflammatory response via inhibiting HMGB1 mediated NF-κB and P38 MAPK signaling pathways in severe acute pancreatitis. Cell Physiol Biochem. 2015;37(4):1379–1389. doi:10.1159/000430403
  • Liu J, Xu Y, Yan M, Yu Y, Guo Y. 18β-Glycyrrhetinic acid suppresses allergic airway inflammation through NF-κB and Nrf2/HO-1 signaling pathways in asthma mice. Sci Rep. 2022;12(1):3121. doi:10.1038/s41598-022-06455-6
  • Feng Y, Mei L, Wang M, Huang Q, Huang R. Anti-inflammatory and pro-apoptotic effects of 18beta-glycyrrhetinic acid in vitro and in vivo models of rheumatoid arthritis. Front Pharmacol. 2021;12:681525. doi:10.3389/fphar.2021.681525
  • Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 2002;59(9):1534–1553. doi:10.1007/s00018-002-8527-2
  • Ni S-Y, Zhong X-L, Li Z-H, et al. Puerarin alleviates lipopolysaccharide-induced Myocardial Fibrosis by inhibiting PARP-1 to prevent HMGB1-mediated TLR4-NF-κB signaling pathway. Cardiovasc Toxicol. 2020;20(5):482–491. doi:10.1007/s12012-020-09571-9
  • Ning J, Ahmed S, Cheng G, et al. Analysis of the stability and affinity of BlaR-CTD protein to β-lactam antibiotics based on docking and mutagenesis studies. J Biol Eng. 2019;13(1):27. doi:10.1186/s13036-019-0157-4