255
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparison of Epidemiological Characteristics Between ESBL and Non-ESBL Isolates of Clinically Isolated Escherichia coli from 2014 to 2022: A Single-Center Study

ORCID Icon, , , , , , & show all
Pages 5185-5195 | Received 14 Apr 2023, Accepted 01 Aug 2023, Published online: 09 Aug 2023

References

  • Barrios H, Garza-Ramos U, Mejia-Miranda I, et al. ESBL-producing Escherichia coli and Klebsiella pneumoniae: the most prevalent clinical isolates obtained between 2005 and 2012 in Mexico. J Glob Antimicrob Resist. 2017;10:243–246. doi:10.1016/j.jgar.2017.06.008
  • Chong Y, Shimoda S, Shimono N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol. 2018;61:185–188. doi:10.1016/j.meegid.2018.04.005
  • Martischang R, François P, Cherkaoui A, et al. Epidemiology of ESBL-producing Escherichia coli from repeated prevalence studies over 11 years in a long-term-care facility. Antimicrob Resist Infect Control. 2021;10(1):148. doi:10.1186/s13756-021-01013-7
  • McDonald KL, Garland S, Carson CA, et al. Measures used to assess the burden of ESBL-producing Escherichia coli infections in humans: a scoping review. JAC Antimicrob Resist. 2021;3(1):dlaa104. doi:10.1093/jacamr/dlaa104
  • Onduru OG, Mkakosya RS, Aboud S, Rumisha SF. Genetic determinants of resistance among ESBL-producing enterobacteriaceae in community and hospital settings in East, Central, and Southern Africa: a systematic review and meta-analysis of prevalence. Can J Infect Dis Med Microbiol. 2021;2021:5153237. doi:10.1155/2021/5153237
  • Karlowsky JA, Lob SH, DeRyke CA, et al. Prevalence of ESBL non-CRE Escherichia coli and Klebsiella pneumoniae among clinical isolates collected by the SMART global surveillance programme from 2015 to 2019. Int J Antimicrob Agents. 2022;59(3):106535. doi:10.1016/j.ijantimicag.2022.106535
  • Kawamura K, Nagano N, Suzuki M, Wachino JI, Kimura K, Arakawa Y. ESBL-producing Escherichia coli 
and its rapid rise among healthy people. Food Saf. 2017;5(4):122–150. doi:10.14252/foodsafetyfscj.2017011
  • CLSI. Performance standards for antimicrobial susceptibility testing. In: Clinical and Laboratory Standards Institute. 30th ed. Wayne, PA: CLSI supplement M100; 2020.
  • Stoll BJ, Puopolo KM, Hansen NI, et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020;174(7):e200593. doi:10.1001/jamapediatrics.2020.0593
  • Flannery DD, Edwards EM, Puopolo KM, Horbar JD. Early-onset sepsis among very preterm infants. Pediatrics. 2021;148(4). doi:10.1542/peds.2021-052456
  • Murray CJL, Ikuta KS, Sharara F; Collaborators AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/s0140-6736(21)02724-0
  • Ait-Mimoune N, Hassaine H, Boulanoir M. Bacteriological profile of urinary tract infections and antibiotic susceptibility of Escherichia coli in Algeria. Iran J Microbiol. 2022;14(2):156–160. doi:10.18502/ijm.v14i2.9180
  • Kalinderi K, Delkos D, Kalinderis M, Athanasiadis A, Kalogiannidis I. Urinary tract infection during pregnancy: current concepts on a common multifaceted problem. J Obstet Gynaecol. 2018;38(4):448–453. doi:10.1080/01443615.2017.1370579
  • Tullus K, Shaikh N. Urinary tract infections in children. Lancet. 2020;395(10237):1659–1668. doi:10.1016/s0140-6736(20)30676-0
  • Chelkeba L, Fanta K, Mulugeta T, Melaku T. Bacterial profile and antimicrobial resistance patterns of common bacteria among pregnant women with bacteriuria in Ethiopia: a systematic review and meta-analysis. Arch Gynecol Obstet. 2022;306(3):663–686. doi:10.1007/s00404-021-06365-4
  • Lopatkin AJ, Bening SC, Manson AL, et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science. 2021;371(6531). doi:10.1126/science.aba0862
  • Arbab S, Ullah H, Wang W, Zhang J. Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Vet Med Sci. 2022;8(4):1780–1786. doi:10.1002/vms3.825
  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4). doi:10.1128/CMR.00088-17
  • Poirel L, Madec JY, Lupo A, et al. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018;6(4). doi:10.1128/microbiolspec.ARBA-0026-2017
  • Van Boeckel TP, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;365(6459). doi:10.1126/science.aaw1944
  • Iskandar K, Rizk R, Matta R, et al. Economic burden of urinary tract infections from antibiotic-resistant Escherichia coli among hospitalized adult patients in lebanon: a prospective cohort study. Value Health Reg Issues. 2021;25:90–98. doi:10.1016/j.vhri.2021.03.001
  • Wang N, Zhan M, Liu J, et al. Prevalence of carbapenem-resistant Klebsiella pneumoniae infection in a Northern Province in China: clinical characteristics, drug resistance, and geographic distribution. Infect Drug Resist. 2022;15:569–579. doi:10.2147/idr.S347343
  • Diallo OO, Baron SA, Abat C, Colson P, Chaudet H, Rolain JM. Antibiotic resistance surveillance systems: a review. J Glob Antimicrob Resist. 2020;23:430–438. doi:10.1016/j.jgar.2020.10.009
  • Liu Y, Zhu M, Fu X, et al. Escherichia coli causing neonatal meningitis during 2001–2020: a study in Eastern China. Int J Gen Med. 2021;14:3007–3016. doi:10.2147/ijgm.S317299
  • Goulart DB, Mellata M. Escherichia coli mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Front Microbiol. 2022;13:928346. doi:10.3389/fmicb.2022.928346
  • Yu D, Ryu K, Zhi S, Otto SJG, Neumann NF. Naturalized Escherichia coli in wastewater and the co-evolution of bacterial resistance to water treatment and antibiotics. Front Microbiol. 2022;13:810312. doi:10.3389/fmicb.2022.810312
  • Zhou W, Lin R, Zhou Z, et al. Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Front Microbiol. 2022;13:1018682. doi:10.3389/fmicb.2022.1018682
  • Wushouer H, Zhou Y, Zhang W, et al. Inpatient antibacterial use trends and patterns, China, 2013–2021. Bull World Health Organ. 2023;101(4):248–261b. doi:10.2471/blt.22.288862
  • Zhang W, Li Z, Wang N, et al. Clinical distribution characteristics of 1439 carbapenem-resistant Escherichia coli strains in china: drug resistance, geographical distribution, antibiotic MIC50/90. Infect Drug Resist. 2021;14:4717–4725. doi:10.2147/idr.S334283
  • Wang Y, Xiao T, Zhu Y, et al. Economic burden of patients with bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Infect Drug Resist. 2020;13:3583–3592. doi:10.2147/idr.S271230
  • Frisbie L, Weissman SJ, Kapoor H, et al. Antimicrobial resistance patterns of urinary Escherichia coli among outpatients in Washington State, 2013–2017: associations with age and sex. Clin Infect Dis. 2021;73(6):1066–1074. doi:10.1093/cid/ciab250
  • Stone GG, Hackel MA. Antimicrobial activity of ceftazidime-avibactam and comparators against levofloxacin-resistant Escherichia coli collected from four geographic regions, 2012–2018. Ann Clin Microbiol Antimicrob. 2022;21(1):13. doi:10.1186/s12941-022-00504-8
  • McDanel J, Schweizer M, Crabb V, et al. Incidence of Extended-Spectrum β-Lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol. 2017;38(10):1209–1215. doi:10.1017/ice.2017.156