229
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genomic Characteristics of Extended Spectrum β-Lactamase Producing Escherichia coli Isolates Recovered from a District Hospital in China

, , , , , , & show all
Pages 3589-3600 | Received 01 Apr 2023, Accepted 02 Jun 2023, Published online: 07 Jun 2023

References

  • Chen F, Lv T, Xiao Y, et al. Clinical characteristics of patients and whole genome sequencing-based surveillance of Escherichia coli community-onset bloodstream infections at a non-tertiary hospital in China. Front Microbiol. 2021;12:748471. doi:10.3389/fmicb.2021.748471
  • Zhao S, Wu Y, Dai Z, et al. Risk factors for antibiotic resistance and mortality in patients with bloodstream infection of Escherichia coli. Eur J Clin Microbiol Infect Dis. 2022;41(5):713–721. doi:10.1007/s10096-022-04423-6
  • Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–331.
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–1233. doi:10.1128/AAC.39.6.1211
  • Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33(2):e00047–19. doi:10.1128/CMR.00047-19
  • Zeng S, Luo J, Li X, et al. Molecular epidemiology and characteristics of CTX-M-55 extended-spectrum β-lactamase-producing Escherichia coli from Guangzhou, China. Front Microbiol. 2021;12:730012. doi:10.3389/fmicb.2021.730012
  • Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1–14. doi:10.1128/AAC.48.1.1-14.2004
  • Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother. 2002;50(6):1031–1034. doi:10.1093/jac/dkf240
  • Bonnet R, Recule C, Baraduc R, et al. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother. 2003;52(1):29–35. doi:10.1093/jac/dkg256
  • Kim YA, Lee K, Chung JE. Risk factors and molecular features of sequence type (ST) 131 extended-Spectrum-β-lactamase-producing Escherichia coli in community-onset female genital tract infections. BMC Infect Dis. 2018;18(1):250. doi:10.1186/s12879-018-3168-8
  • Li D, Wyrsch ER, Elankumaran P, et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom. 2021;7(12):000721. doi:10.1099/mgen.0.000721
  • Wang Z, Lu Q, Mao X, et al. Prevalence of extended-spectrum β-lactamase-resistant genes in Escherichia coli isolates from Central China during 2016–2019. Animals. 2022;12(22):3191. doi:10.3390/ani12223191
  • Xiao S, Tang C, Zeng Q, et al. Antimicrobial resistance and molecular epidemiology of Escherichia coli from bloodstream infection in Shanghai, China, 2016–2019. Front Med. 2021;8:803837. doi:10.3389/fmed.2021.803837
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. [EB/OL]; 2020. Available from: https://clsi.org/standards/products/microbiology/documents/m100/. Accessed June 6, 2023.
  • Hou TY, Chiang-Ni C, Teng SH. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal. 2019;27(2):404–414. doi:10.1016/j.jfda.2019.01.001
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170
  • Prjibelski A, Antipov D, Meleshko D, et al. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70(1):e102. doi:10.1002/cpbi.102
  • Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi:10.1371/journal.pone.0112963
  • Modi A, Vai S, Caramelli D, et al. The illumina sequencing protocol and the NovaSeq 6000 system. Methods Mol Biol. 2021;2242:15–42.
  • Wick RR, Judd LM, Gorrie CL, et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. doi:10.1371/journal.pcbi.1005595
  • Tatusova T, Dicuccio M, Badretdin A, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–6624. doi:10.1093/nar/gkw569
  • Feng Y, Zou S, Chen H, et al. BacWGSTdb 2.0: a one-stop repository for bacterial whole-genome sequence typing and source tracking. Nucleic Acids Res. 2021;49(D1):D644–d650. doi:10.1093/nar/gkaa821
  • Ruan Z, Feng Y. BacWGSTdb, a database for genotyping and source tracking bacterial pathogens. Nucleic Acids Res. 2016;44(D1):D682–7. doi:10.1093/nar/gkv1004
  • Ruan Z, Yu Y, Feng Y. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology. Brief Bioinform. 2020;21(2):741–750. doi:10.1093/bib/bbz010
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi:10.1093/bioinformatics/btu033
  • Silva M, Machado MP, Silva DN, et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom. 2018;4(3):e000166. doi:10.1099/mgen.0.000166
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Liu B, Zheng D, Zhou S, et al. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):D912–d917. doi:10.1093/nar/gkab1107
  • Joensen KG, Tetzschner AM, Iguchi A, et al. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol. 2015;53(8):2410–2426. doi:10.1128/JCM.00008-15
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–w296. doi:10.1093/nar/gkab301
  • Carattoli A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi:10.1128/AAC.02412-14
  • Siguier P, Perochon J, Lestrade L, et al. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32–6. doi:10.1093/nar/gkj014
  • Shawa M, Furuta Y, Mulenga G, et al. Novel chromosomal insertions of ISEcp1-bla(CTX-M-15) and diverse antimicrobial resistance genes in Zambian clinical isolates of Enterobacter cloacae and Escherichia coli. Antimicrob Resist Infect Control. 2021;10(1):79. doi:10.1186/s13756-021-00941-8
  • Peirano G, Pitout JDD. Extended-spectrum β-lactamase-producing enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs. 2019;79(14):1529–1541. doi:10.1007/s40265-019-01180-3
  • Ayele AA, Gebresillassie BM, Erku DA, et al. Prospective evaluation of Ceftriaxone use in medical and emergency wards of Gondar university referral hospital, Ethiopia. Pharmacol Res Perspect. 2018;6(1):e00383. doi:10.1002/prp2.383
  • Pilmis B, Jiang O, Mizrahi A, et al. No significant difference between ceftriaxone and cefotaxime in the emergence of antibiotic resistance in the gut microbiota of hospitalized patients: a pilot study. Int J Infect Dis. 2021;104:617–623. doi:10.1016/j.ijid.2021.01.025
  • Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145–2155. doi:10.1093/jac/dkx146
  • Zhao Q-Y, Li W, Cai R-M, et al. Mobilization of Tn1721-like structure harboring blaCTX-M-27 between P1-like bacteriophage in Salmonella and plasmids in Escherichia coli in China. Vet Microbiol. 2021;253:108944. doi:10.1016/j.vetmic.2020.108944
  • Nguyen MN, Hoang HT, Xavier BB, et al. Prospective One Health genetic surveillance in Vietnam identifies distinct bla(CTX-M)-harbouring Escherichia coli in food-chain and human-derived samples. Clin Microbiol Infect. 2021;27(10):1515.e1–1515.e8. doi:10.1016/j.cmi.2021.01.006
  • Birgy A, Levy C, Nicolas-Chanoine MH, et al. Independent host factors and bacterial genetic determinants of the emergence and dominance of Escherichia coli sequence type 131 CTX-M-27 in a community pediatric cohort study. Antimicrob Agents Chemother. 2019;63(7):e00382–19. doi:10.1128/AAC.00382-19
  • Ghosh H, Bunk B, Doijad S, et al. Complete genome sequence of bla(CTX-M-27)-encoding Escherichia coli strain H105 of sequence type 131 lineage C1/H30R. Genome Announc. 2017;5(31):e00736–17. doi:10.1128/genomeA.00736-17
  • Widyatama FS, Yagi N, Sarassari R, et al. Analysis of the upstream genetic structures of the ISEcp1-bla(CTX-M) transposition units in Escherichia coli isolates carrying bla(CTX-M) obtained from the Indonesian and Vietnamese communities. Microbiol Immunol. 2021;65(12):542–550. doi:10.1111/1348-0421.12938
  • Liu Z, Wang K, Zhang Y, et al. High prevalence and diversity characteristics of bla(NDM), mcr, and bla(ESBLs) harboring multidrug-resistant Escherichia coli from chicken, pig, and cattle in China. Front Cell Infect Microbiol. 2021;11:755545. doi:10.3389/fcimb.2021.755545
  • Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092. doi:10.1093/jacamr/dlab092
  • Zhang Y, Sun YH, Wang JY, et al. A novel structure harboring bla(CTX-M-27) on IncF plasmids in Escherichia coli isolated from swine in China. Antibiotics. 2021;10(4):387. doi:10.3390/antibiotics10040387
  • Dahbi G, Mora A, Mamani R, et al. Molecular epidemiology and virulence of Escherichia coli O16:H5-ST131: comparison with H30 and H30-Rx subclones of O25b:H4-ST131. Int J Med Microbiol. 2014;304(8):1247–1257. doi:10.1016/j.ijmm.2014.10.002
  • Pitout JD, Peirano G, Chen L, et al. Escherichia coli ST1193: following in the footsteps of E. coli ST131. Antimicrob Agents Chemother. 2022;66(7):e0051122. doi:10.1128/aac.00511-22
  • Johnson TJ, Elnekave E, Miller EA, et al. Phylogenomic analysis of extraintestinal pathogenic Escherichia coli sequence type 1193, an emerging multidrug-resistant clonal group. Antimicrob Agents Chemother. 2019;63(1):e01913–18. doi:10.1128/AAC.01913-18
  • Tchesnokova V, Radey M, Chattopadhyay S, et al. Pandemic fluoroquinolone resistant Escherichia coli clone ST1193 emerged via simultaneous homologous recombinations in 11 gene loci. Proc Natl Acad Sci U S A. 2019;116(29):14740–14748. doi:10.1073/pnas.1903002116
  • Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–17. doi:10.1128/CMR.00088-17
  • Madec JY, Haenni M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid. 2018;99:72–81. doi:10.1016/j.plasmid.2018.09.001
  • Ravi A, Valdés-Varela L, Gueimonde M, et al. Transmission and persistence of IncF conjugative plasmids in the gut microbiota of full-term infants. FEMS Microbiol Ecol. 2018;94(1):fix158. doi:10.1093/femsec/fix158
  • Hamamoto K, Tokunaga T, Yagi N, et al. Characterization of bla(CTX-M-14) transposition from plasmid to chromosome in Escherichia coli experimental strain. Int J Med Microbiol. 2020;310(2):151395. doi:10.1016/j.ijmm.2020.151395