260
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Predicting Antibiotic Resistance in ICUs Patients by Applying Machine Learning in Vietnam

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5535-5546 | Received 05 Apr 2023, Accepted 16 Aug 2023, Published online: 22 Aug 2023

References

  • Thangaraju P, Venkatesan S. WHO Ten threats to global health in 2019: antimicrobial resistance. Cukurova Med J. 2019;44(3):1150–1151. doi:10.17826/cumj.514157
  • Gebeyehu E, Bantie L, Azage M, Ciccozzi M. Inappropriate use of antibiotics and its associated factors among Urban and Rural Communities of Bahir Dar City Administration, Northwest Ethiopia. PLoS One. 2015;10(9):e0138179. doi:10.1371/journal.pone.0138179
  • Chowdhury AS, Lofgren ET, Moehring RW, Broschat SL. Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. J Appl Microbiol. 2020;128(3):688–696. doi:10.1111/jam.14499
  • Martinez-Aguero S, Mora-Jimenez I, Lerida-Garcia J, Alvarez-Rodriguez J, Soguero-Ruiz C. Machine learning techniques to identify antimicrobial resistance in the Intensive Care Unit. Entropy. 2019;21(6):603. doi:10.3390/e21060603
  • Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–2329. doi:10.1001/jama.2009.1754
  • Nguyen KV, Thi Do NT, Chandna A, et al. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam. BMC Public Health. 2013;13(1):1158. doi:10.1186/1471-2458-13-1158
  • Kinh NV, Wertheim HFL, Thwaites GE, et al. Developing an antimicrobial resistance reference laboratory and surveillance programme in Vietnam. Lancet Glob Health. 2017;5(12):e1186–e1187. doi:10.1016/S2214-109X(17)30370-4
  • Tvd V, Ttn D, Rydell U, et al. Antimicrobial susceptibility testing and antibiotic consumption results from 16 hospitals in Viet Nam: the VINARES project 2012–2013. J Global Antimicrob Resist. 2019;18:269–278. doi:10.1016/j.jgar.2019.06.002
  • Vasala A, Hytonen VP, Laitinen OH. Modern tools for rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol. 2020;10:308. doi:10.3389/fcimb.2020.00308
  • Thu TA, Rahman M, Coffin S, Harun-Or-Rashid M, Sakamoto J, Hung NV. Antibiotic use in Vietnamese hospitals: a multicenter point-prevalence study. Am J Infect Control. 2012;40(9):840–844. doi:10.1016/j.ajic.2011.10.020
  • Lv J, Deng S, Zhang L. A review of artificial intelligence applications for antimicrobial resistance. Biosafety and Health. 2021;3(1):22–31. doi:10.1016/j.bsheal.2020.08.003
  • Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–595. doi:10.1016/j.cmi.2019.09.009
  • Anahtar MN, Yang JH, Kanjilal S, McAdam AJ. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J Clin Microbiol. 2021;59(7):e0126020. doi:10.1128/JCM.01260-20
  • Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–1930. doi:10.1161/CIRCULATIONAHA.115.001593
  • Clinical and Labortory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. Wayne, PA: Clinical and Labortory Standard Institute; 2017.
  • McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276–282. doi:10.11613/BM.2012.031
  • Oonsivilai M, Mo Y, Luangasanatip N, et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children’s hospital in Cambodia. Wellcome Open Res. 2018;3:131. doi:10.12688/wellcomeopenres.14847.1
  • Janitza S, Celik E, Boulesteix A. A computationally fast variable importance test for random forests for high-dimensional data. Adv Data Anal Classif. 2018;12(4):885–915. doi:10.1007/s11634-016-0276-4
  • Feretzakis G, Sakagianni A, Loupelis E, et al. Using machine learning to predict antimicrobial resistance of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa strains. Stud Health Technol Inform. 2021;281:43–47. doi:10.3233/SHTI210117
  • Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6. doi:10.1186/s12864-019-6413-7
  • Zoabi Y, Deri-Rozov S, Shomron N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. NPJ Digit Med. 2021;4(1):3. doi:10.1038/s41746-020-00372-6
  • Lewin-Epstein O, Baruch S, Hadany L, Stein GY, Obolski U. Predicting antibiotic resistance in hospitalized patients by applying machine learning to electronic medical records. Clin Infect Dis. 2021;72(11):e848–e855. doi:10.1093/cid/ciaa1576
  • Tzelves L, Lazarou L, Feretzakis G, et al. Using machine learning techniques to predict antimicrobial resistance in stone disease patients. World J Urol. 2022;40(7):1731–1736. doi:10.1007/s00345-022-04043-x
  • Zoabi Y, Kehat O, Lahav D, Weiss-Meilik A, Adler A, Shomron N. Predicting bloodstream infection outcome using machine learning. Sci Rep. 2021;11(1):20101. doi:10.1038/s41598-021-99105-2
  • Adeshina YO, Deeds EJ, Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc Natl Acad Sci U S A. 2020;117(31):18477–18488. doi:10.1073/pnas.2000585117
  • Low M, Neuberger A, Hooton TM, et al. Association between urinary community-acquired fluoroquinolone-resistant Escherichia coli and neighbourhood antibiotic consumption: a population-based case-control study. Lancet Infect Dis. 2019;19(4):419–428. doi:10.1016/S1473-3099(18)30676-5
  • Yelin I, Snitser O, Novich G, et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med. 2019;25(7):1143–1152. doi:10.1038/s41591-019-0503-6
  • Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ. 2010;340:c2096. doi:10.1136/bmj.c2096
  • Pouwels KB, Freeman R, Muller-Pebody B, et al. Association between use of different antibiotics and trimethoprim resistance: going beyond the obvious crude association. J Antimicrob Chemother. 2018;73(6):1700–1707. doi:10.1093/jac/dky031
  • Sommer MO, Church GM, Dantas G. The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence. 2010;1(4):299–303. doi:10.4161/viru.1.4.12010
  • Baron SA, Diene SM, Rolain J-M. Human microbiomes and antibiotic resistance. Hum Microbiome J. 2018;10:43–52. doi:10.1016/j.humic.2018.08.005
  • Corpet DE. Antibiotic resistance from food. N Engl J Med. 1988;318(18):1206–1207. doi:10.1056/nejm198805053181818
  • Van TT, Moutafis G, Tran LT, Coloe PJ. Antibiotic resistance in food-borne bacterial contaminants in Vietnam. Appl Environ Microbiol. 2007;73(24):7906–7911. doi:10.1128/AEM.00973-07