337
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Efficacy of a Novel Antibacterial Agent Exeporfinium Chloride, (XF-73), Against Antibiotic-Resistant Bacteria in Mouse Superficial Skin Infection Models

, , , , &
Pages 4867-4879 | Received 12 May 2023, Accepted 12 Jul 2023, Published online: 25 Jul 2023

References

  • Moffarah AS, Al Mohajer M, Hurwitz BL, Armstrong DG. Skin and soft tissue infections. Microbiol Spectr. 2016;4(4). doi:10.1128/microbiolspec.DMIH2-0014-2015
  • Sartelli M, Guirao X, Hardcastle TC, et al. 2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J Emerg Surg. 2018;13:58. doi:10.1186/s13017-018-0219-9
  • Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother. 1985;27(4):495–498. doi:10.1128/AAC.27.4.495
  • Goldfarb J, Crenshaw D, O’Horo J, Lemon E, Blumer JL. Randomized clinical trial of topical mupirocin versus oral erythromycin for impetigo. Antimicrob Agents Chemother. 1988;32(12):1780–1783. doi:10.1128/AAC.32.12.1780
  • McLinn S. A bacteriologically controlled, randomized study comparing the efficacy of 2% mupirocin ointment (Bactroban) with oral erythromycin in the treatment of patients with impetigo. J Am Acad Dermatol. 1990;22(5 Pt 1):883–885. doi:10.1016/0190-9622(90)70118-2
  • Dadashi M, Hajikhani B, Darban-Sarokhalil D, van Belkum A, Goudarzi M. Mupirocin resistance in Staphylococcus aureus: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2020;20:238–247. doi:10.1016/j.jgar.2019.07.032
  • Farrell DJ, Robbins M, Rhys-Williams W, Love WG. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant gram-positive and gram-negative bacterial species. Int J Antimicrob Agents. 2010;35(6):531–536. doi:10.1016/j.ijantimicag.2010.02.008
  • Farrell DJ, Robbins M, Rhys-Williams W, Love WG. Investigation of the potential for mutational resistance to XF-73, retapamulin, mupirocin, fusidic acid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus isolates during a 55-passage study. Antimicrob Agents Chemother. 2011;55(3):1177–1181. doi:10.1128/AAC.01285-10
  • Hurtuk MG, He LK, Szilagyi A, et al. The novel antibacterial drug XF-70 is a potent inhibitor of Staphylococcus aureus infection of the burn wound. J Burn Care Res. 2010;31(3):462–469. doi:10.1097/BCR.0b013e3181db5265
  • CLSI Institute. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Clinical and Laboratory Standards Institute; 2021.
  • Haas CE, Nix DE, Schentag JJ. In vitro selection of resistant Helicobacter pylori. Antimicrob Agents Chemother. 1990;34(9):1637–1641. doi:10.1128/AAC.34.9.1637
  • Li L, Li R, Qi C, et al. Mechanisms of polymyxin resistance induced by Salmonella typhimurium in vitro. Vet Microbiol. 2021;257:109063. doi:10.1016/j.vetmic.2021.109063
  • Ding YX, Wu Q, Guo Y, et al. Effects of in vitro-induced drug resistance on the virulence of Streptococcus. Vet Med Sci. 2021;7(3):935–943. doi:10.1002/vms3.404
  • Kugelberg E, Norstrom T, Petersen TK, Duvold T, Andersson DI, Hughes D. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother. 2005;49(8):3435–3441. doi:10.1128/AAC.49.8.3435-3441.2005
  • Imanishi I, Hattori S, Hisatsune J, Ide K, Sugai M, Nishifuji K. Staphylococcus aureus penetrate the interkeratinocyte spaces created by skin-infiltrating neutrophils in a mouse model of impetigo. Vet Dermatol. 2017;28(1):126–e27. doi:10.1111/vde.12398
  • Hahn BL, Onunkwo CC, Watts CJ, Sohnle PG. Systemic dissemination and cutaneous damage in a mouse model of staphylococcal skin infections. Microb Pathog. 2009;47(1):16–23. doi:10.1016/j.micpath.2009.04.007
  • Gisby J, Bryant J. Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother. 2000;44(2):255–260. doi:10.1128/AAC.44.2.255-260.2000
  • Tarrago C, Esquirol LP, Arano A, Lachamp L, D’Aniello F, Zsolt I. Therapeutic efficacy of ozenoxacin in animal models of dermal infection with Staphylococcus aureus. Future Microbiol. 2018;13:21–30. doi:10.2217/fmb-2017-0290
  • Hakansson J, Bjorn C, Lindgren K, Sjostrom E, Sjostrand V, Mahlapuu M. Efficacy of the novel topical antimicrobial agent PXL150 in a mouse model of surgical site infections. Antimicrob Agents Chemother. 2014;58(5):2982–2984. doi:10.1128/AAC.00143-14
  • Hakansson J, Ringstad L, Umerska A, et al. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 used for topical treatment. Front Cell Infect Microbiol. 2019;9:174. doi:10.3389/fcimb.2019.00174
  • Zang H, Qian S, Li J, et al. The effect of selenium on the autophagy of macrophage infected by Staphylococcus aureus. Int Immunopharmacol. 2020;83:106406. doi:10.1016/j.intimp.2020.106406
  • Liang H, He K, Li T, et al. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci Rep. 2020;10(1):21416. doi:10.1038/s41598-020-78379-y
  • Ooi N, Miller K, Hobbs J, Rhys-Williams W, Love W, Chopra I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother. 2009;64(4):735–740. doi:10.1093/jac/dkp299
  • Onunkwo CC, Hahn BL, Sohnle PG. Clearance of experimental cutaneous Staphylococcus aureus infections in mice. Arch Dermatol Res. 2010;302(5):375–382. doi:10.1007/s00403-010-1030-y
  • Rittenhouse S, Singley C, Hoover J, Page R, Payne D. Use of the surgical wound infection model to determine the efficacious dosing regimen of retapamulin, a novel topical antibiotic. Antimicrob Agents Chemother. 2006;50(11):3886–3888. doi:10.1128/AAC.00183-06
  • Yendewa GA, Griffiss JM, Jacobs MR, et al. A two-part Phase 1 study to establish and compare the safety and local tolerability of two nasal formulations of XF-73 for decolonisation of Staphylococcus aureus: a previously investigated 0.5mg/g viscosified gel formulation versus a modified formulation. J Glob Antimicrob Resist. 2020;21:171–180. doi:10.1016/j.jgar.2019.09.017
  • Maxwell A, Dowson CG, Spencer J. The molecular basis of antibiotic action and resistance. J Mol Biol. 2019;431(18):3367–3369. doi:10.1016/j.jmb.2019.06.018
  • Lee J-H. Perspectives towards antibiotic resistance: from molecules to population. J Microbiol. 2019;57(3):181–184. doi:10.1007/s12275-019-0718-8
  • Jensen C, Li H, Vestergaard M, Dalsgaard A, Frees D, Leisner JJ. Nisin damages the septal membrane and triggers DNA condensation in methicillin-resistant Staphylococcus aureus. Front Microbiol. 2020;11:1007. doi:10.3389/fmicb.2020.01007