487
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Hypervirulent Klebsiella pneumoniae

, ORCID Icon &
Pages 5243-5249 | Received 25 May 2023, Accepted 03 Aug 2023, Published online: 11 Aug 2023

References

  • Friedlander C. Ueber die Schizomyceten bei der acuten fibrosen Pneumonie. Virchows Arch Pathol Anat Physiol Klin Med. 1882;87(2):319–324. doi:10.1007/BF01880516
  • Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med. 1986;146(10):1913–1916. doi:10.1001/archinte.1986.00360220057011
  • Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):e00001–19. doi:10.1128/CMR.00001-19
  • Zhang Y, Zeng J, Liu W, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect. 2015;71(5):553–560. doi:10.1016/j.jinf.2015.07.010
  • Spadar A, Perdigão J, Campino S, et al. Large-scale genomic analysis of global Klebsiella pneumoniae plasmids reveals multiple simultaneous clusters of carbapenem-resistant hypervirulent strains. Genome Med. 2023;15(1):3. doi:10.1186/s13073-023-01153-y
  • Liu C, Dong N, Chan EWC, Chen S, Zhang R. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in China, 2016–20. Lancet Infect Dis. 2022;22(2):167–168. doi:10.1016/S1473-3099(22)00009-3
  • Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359. doi:10.1038/s41579-019-0315-1
  • Russo TA, Olson R, Fang CT, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018;56(9):e00776–18. doi:10.1128/JCM.00776-18
  • Kamau E, Allyn PR, Beaird OE, et al. Endogenous endophthalmitis caused by ST66-K2 hypervirulent Klebsiella pneumoniae, United States. Emerg Infect Dis. 2021;27(8):2215–2218. doi:10.3201/eid2708.210234
  • Page MGP. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin Infect Dis. 2019;69(Suppl 7):S529–S537. doi:10.1093/cid/ciz825
  • Ghssein G, Ezzeddine Z. A review of pseudomonas aeruginosa metallophores: pyoverdine, pyochelin and pseudopaline. Biology. 2022;11(12):1711. doi:10.3390/biology11121711
  • Ghssein G, Ezzeddine Z. The key element role of metallophores in the pathogenicity and virulence of staphylococcus aureus: a review. Biology. 2022;11(10):1525. doi:10.3390/biology11101525
  • Chaaban T, Mohsen Y, Ezzeddine Z, et al. Overview of Yersinia pestis metallophores: yersiniabactin and yersinopine. Biology. 2023;12(4):598. doi:10.3390/biology12040598
  • Doshi S, Forbes JD, Mubareka S, et al. Disseminated hypervirulent Klebsiella pneumoniae causing endophthalmitis, and lung and liver abscesses. CMAJ. 2022;194(18):E645–E648. doi:10.1503/cmaj.211413
  • Matono T, Morita M, Nakao N, Teshima Y, Ohnishi M. Genomic insights into virulence factors affecting tissue-invasive Klebsiella pneumoniae infection. Ann Clin Microbiol Antimicrob. 2022;21(1):2. doi:10.1186/s12941-022-00494-7
  • Liu S, Huang Z, Kong J, et al. Effects of aerobactin-encoding gene iucB and regulator of mucoid phenotype rmpA on the virulence of Klebsiella pneumoniae causing liver abscess. Front Cell Infect Microbiol. 2022;12:968955. doi:10.3389/fcimb.2022.968955
  • Russo TA, Gulick AM. Aerobactin synthesis proteins as antivirulence targets in hypervirulent Klebsiella pneumoniae. ACS Infect Dis. 2019;5(7):1052–1054. doi:10.1021/acsinfecdis.9b00117
  • Pan Y-J, Lin T-L, Chen C-T, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep. 2015;5(1):15573. doi:10.1038/srep15573
  • Dorman MJ, Feltwell T, Goulding DA, et al. The capsule regulatory network of Klebsiella pneumoniae defined by density-TraDISort. mBio. 2018;9(6):e01863–18. doi:10.1128/mBio.01863-18
  • Lin CT, Chen YC, Jinn TR, Wu CC, Hong YM, Wu WH. Role of the cAMP-dependent carbon catabolite repression in capsular polysaccha ride biosynthesis in Klebsiella pneumoniae. PLoS One. 2013;8(2):e54430. doi:10.1371/journal.pone.0054430
  • Lee IR, Sng E, Lee KO, et al. Comparison of diabetic and non-diabetic human leukocytic responses to different capsule types of Klebsiella pneumoniae responsible for causing pyogenic liver abscess. Front Cell Infect Microbiol. 2017;7:401. doi:10.3389/fcimb.2017.00401
  • Ovchinnikova OG, Treat LP, Teelucksingh T, et al. Hypermucoviscosity regulator RmpD interacts with Wzc and controls capsular polysaccharide chain length. mBio. 2023;14(3):e0080023. doi:10.1128/mbio.00800-23
  • Wang L, Huang X, Jin Q, et al. Two-Component response regulator ompr regulates mucoviscosity through energy metabolism in Klebsiella pneumoniae. Microbiol Spectr. 2023;11(3):e0054423. doi:10.1128/spectrum.00544-23
  • Walker KA, Miner TA, Palacios M, et al. A Klebsiella pneumoniae regulatory mutant has reduced capsule expression but retains hypermucoviscosity. mBio. 2019;10(2):e00089–19. doi:10.1128/mBio.00089-19
  • Mike LA, Stark AJ, Forsyth VS, et al. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog. 2021;17(3):e1009376. doi:10.1371/journal.ppat.1009376
  • Jin M, Jia T, Liu X, et al. Clinical and genomic analysis of hypermucoviscous Klebsiella pneumoniae isolates: identification of new hypermucoviscosity associated genes. Front Cell Infect Microbiol. 2023;12:1063406. doi:10.3389/fcimb.2022.1063406
  • Dunstan RA, Bamert RS, Belousoff MJ, et al. Mechanistic insights into the capsule-targeting depolymerase from a Klebsiella pneumoniae bacteriophage. Microbiol Spectr. 2021;9(1):e0102321. doi:10.1128/Spectrum.01023-21
  • Wang W, Tian D, Hu D, Chen W, Zhou Y, Jiang X. Different regulatory mechanisms of the capsule in hypervirulent Klebsiella pneumonia: “direct” wcaJ variation vs. “indirect” rmpA regulation. Front Cell Infect Microbiol. 2023;13:1108818. doi:10.3389/fcimb.2023.1108818
  • Wang S, Ding Q, Zhang Y, et al. Evolution of virulence, fitness, and carbapenem resistance transmission in ST23 hypervirulent Klebsiella pneumoniae with the capsular polysaccharide synthesis gene wcaj inserted via insertion sequence elements. Microbiol Spectr. 2022;10(6):e0240022. doi:10.1128/spectrum.02400-22
  • Lam MMC, Wyres KL, Duchêne S, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun. 2018;9(1):2703. doi:10.1038/s41467-018-05114-7
  • Luo C, Chen Y, Xueni H, et al. Genetic and functional analysis of the pks gene in Clinical Klebsiella pneumoniae isolates. Microbiol Spectr;2023. e0017423. doi:10.1128/spectrum.00174-23
  • Wang Y-C, Min-Chi L, Yia-Ting L, et al. Microevolution of CG23-I hypervirulent Klebsiella pneumoniae during recurrent infections in a single patient. Microbiol Spectr. 2022;10(5):e0207722. doi:10.1128/spectrum.02077-22
  • Lu MC, Chen YT, Chiang MK, et al. Colibactin Contributes to the hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in mouse meningitis infections. Front Cell Infect Microbiol. 2017;7:103. doi:10.3389/fcimb.2017.00103
  • Tanimoto H, Shigemura K, Osawa K, et al. Comparative genetic analysis of the antimicrobial susceptibilities and virulence of hypermucoviscous and non-hypermucoviscous ESBL-producing Klebsiella pneumoniae in Japan. J Microbiol Immunol Infect. 2023;56(1):93–103. doi:10.1016/j.jmii.2022.08.010
  • Jingnan L, Zhu J, Wang T, et al. The role of the two-component QseBC signaling system in biofilm formation and virulence of hypervirulent Klebsiella pneumoniae ATCC43816. Front Microbiol. 2022;13:817494. doi:10.3389/fmicb.2022.817494
  • Liu P, Yang A, Tang B, et al. Molecular epidemiology and clinical characteristics of the type VI secretion system in Klebsiella pneumoniae causing abscesses. Front Microbiol. 2023;14:1181701. doi:10.3389/fmicb.2023.1181701
  • Bulger J, MacDonald U, Olson R, Beanan J, Russo TA, Bäumler AJ. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKP1 after pulmonary but not subcutaneous challenge. Infect Immun. 2017;85(10):e00093–17. doi:10.1128/IAI.00093-17
  • Liao W, Long D, Huang Q, et al. Rapid detection to differentiate hypervirulent Klebsiella pneumoniae (hvKP) from classical K. pneumoniae by identifying peg-344 with Loop-Mediated Isothermal Amplification (LAMP). Front Microbiol. 2020;11:1189. doi:10.3389/fmicb.2020.01189
  • Dong N, Yang X, Chan EW, Zhang R, Chen S. Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022;79:103998. doi:10.1016/j.ebiom.2022.103998
  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–17. doi:10.1128/CMR.00088-17
  • Yang X, Dong N, Chan EW, Zhang R, Chen S. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021;29(1):65–83. doi:10.1016/j.tim.2020.04.012
  • Tian D, Liu X, Chen W, et al. Prevalence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae under divergent evolutionary patterns. Emerg Microbes Infect. 2022;11(1):1936–1949. doi:10.1080/22221751.2022.2103454
  • Xu Y, Zhang J, Wang M, et al. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae. Genome Med. 2021;13(1):119. doi:10.1186/s13073-021-00936-5
  • Wang X, Tang B, Liu G, et al. Transmission of nonconjugative virulence or resistance plasmids mediated by a self-transferable IncN3 plasmid from carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr. 2022;10(4):e0136422. doi:10.1128/spectrum.01364-22
  • Jin X, Chen Q, Shen F, et al. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin. Emerg Microbes Infect. 2021;10(1):1129–1136. doi:10.1080/22221751.2021.1937327
  • Tang M, Li J, Liu Z, et al. Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring blaNDM-1 and blaKPC-2 in a tertiary hospital in China. BMC Microbiol. 2023;23(1):64. doi:10.1186/s12866-023-02808-x
  • Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37–46. doi:10.1016/S1473-3099(17)30489-9
  • Zhou Y, Wu C, Wang B, et al. Characterization difference of typical KL1, KL2 and ST11-KL64 hypervirulent and carbapenem-resistant Klebsiella pneumoniae. Drug Resist Updat. 2023;67:100918. doi:10.1016/j.drup.2023.100918
  • Hua Y, Wang J, Huang M, et al. Outer membrane vesicles-transmitted virulence genes mediate the emergence of new antimicrobial-resistant hypervirulent Klebsiella pneumoniae. Emerg Microbes Infect. 2022;11(1):1281–1292. doi:10.1080/22221751.2022.2065935
  • Jia X, Zhu Y, Jia P, et al. Emergence of a superplasmid coharboring hypervirulence and multidrug resistance genes in Klebsiella pneumoniae poses new challenges to public health. Microbiol Spectr. 2022;10(6):e0263422. doi:10.1128/spectrum.02634-22
  • Xia P, Yi M, Yuan Y, et al. Coexistence of multidrug resistance and virulence in a single conjugative plasmid from a hypervirulent Klebsiella pneumoniae isolate of sequence type 25. mSphere. 2022;7(6):e0047722. doi:10.1128/msphere.00477-22
  • Wu C, Zhou Y, Ai W, et al. Co-occurrence of OXA-232, RmtF-encoding plasmids, and pLVPK-like virulence plasmid contributed to the generation of ST15-KL112 hypervirulent multidrug-resistant Klebsiella pneumoniae. Front Microbiol. 2023;14:1133590. doi:10.3389/fmicb.2023.1133590
  • Wang L, Shen D, Wu H, Ma Y, Jeyaseelan S. Resistance of hypervirulent Klebsiella pneumoniae to both intracellular and extracellular killing of neutrophils. PLoS One. 2017;12(3):e0173638. doi:10.1371/journal.pone.0173638
  • Ma X, Zhang L, Yue C, et al. The anti-virulence effect of sub-minimal inhibitory concentrations of levofloxacin on hypervirulent Klebsiella pneumoniae. Infect Drug Resist. 2022;15:3513–3522. doi:10.2147/IDR.S370273
  • Lin T-H, Chien-Chen W, Tseng C-Y, et al. Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. J Microbiol Immunol Infect. 2022;55(6 Pt 2):1255–1262. doi:10.1016/j.jmii.2021.07.002
  • Lee CH, Chuah SK, Tai WC, Chang CC, Chen FJ. Delay in human neutrophil constitutive apoptosis after infection with Klebsiella pneumoniae serotype K1. Front Cell Infect Microbiol. 2017;7:87. doi:10.3389/fcimb.2017.00087
  • Yang G, Xu Q, Chen S, et al. Neutrophil function in hypervirulent Klebsiella pneumoniae infection. Lancet Microbe. 2022;3(4):e248. doi:10.1016/S2666-5247(22)00004-0
  • Wanford JJ, Hames RG, Carreno D, et al. Interaction of Klebsiella pneumoniae with tissue macrophages in a mouse infection model and ex-vivo pig organ perfusions: an exploratory investigation. Lancet Microbe. 2021;2(12):e695–e703. doi:10.1016/S2666-5247(21)00195-6