194
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Predictors of COVID-19 Severity in Elderly Patients Infected by Omicron in China, 18 December 2022–5 February 2023

ORCID Icon, , ORCID Icon, , , , , ORCID Icon, ORCID Icon & show all
Pages 4505-4518 | Received 08 May 2023, Accepted 06 Jul 2023, Published online: 11 Jul 2023

References

  • Ahsan W, Alhazmi HA, Patel KS, et al. Recent advancements in the diagnosis, prevention, and prospective drug therapy of COVID-19. Front Public Health. 2020;8:384. doi:10.3389/fpubh.2020.00384
  • Wang Y, Liu M, Shen Y, et al. Novel sarbecovirus bispecific neutralizing antibodies with exceptional breadth and potency against currently circulating SARS-CoV-2 variants and sarbecoviruses. Cell Discov. 2022;8(1):36. doi:10.1038/s41421-022-00401-6
  • Zheng L, Liu S, Lu F. Impact of National Omicron Outbreak at the end of 2022 on the future outlook of COVID-19 in China. Emerg Microbes Infect. 2023;12(1):2191738. doi:10.1080/22221751.2023.2191738
  • Duan M, Duan H, An Y, et al. A booster of Delta-Omicron RBD-dimer protein subunit vaccine augments sera neutralization of Omicron sub-variants BA.1/BA.2/BA.2.12.1/BA.4/BA.5. Emerg Microbes Infect. 2023;12(1):e2179357. doi:10.1080/22221751.2023.2179357
  • Cegolon L, Ronchese F, Ricci F, Negro C, Larese-Filon F. SARS-CoV-2 infection in health care workers of Trieste (North-Eastern Italy), 1 October 2020–7 February 2022: occupational risk and the impact of the omicron variant. Viruses. 2022;14(8):1663. doi:10.3390/v14081663
  • Basso P, Negro C, Cegolon L, Larese Filon F. Risk of vaccine breakthrough SARS-CoV-2 infection and associated factors in healthcare workers of Trieste teaching hospitals (North-Eastern Italy). Viruses. 2022;14(2):336. doi:10.3390/v14020336
  • Cegolon L, Negro C, Mastrangelo G, Filon FL; ORCHESTRA working group. Primary SARS-CoV-2 infections, re-infections and vaccine effectiveness during the omicron transmission period in healthcare workers of Trieste and Gorizia (Northeast Italy), 1 December 2021–31 May 2022. Viruses. 2022;14(12):2688. doi:10.3390/v14122688
  • Elemam NM, Talaat IM, Maghazachi AA, Saber-Ayad M. Liver injury associated with COVID-19 infection: pathogenesis, histopathology, prognosis, and treatment. J Clin Med. 2023;12(5):2067. doi:10.3390/jcm12052067
  • Herrera VLM, Walkey AJ, Nguyen MQ, et al. A targetable “rogue” neutrophil-subset, [CD11b+DEspR+] immunotype, is associated with severity and mortality in acute respiratory distress syndrome (ARDS) and COVID-19-ARDS. Sci Rep. 2022;12(1):5583. doi:10.1038/s41598-022-09343-1
  • European Centre for Disease Prevention and Control. Clinical characteristics of COVID-19. Available from: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/clinical. Accessed June 19, 2023.
  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–880. doi:10.1016/j.cell.2021.01.007
  • Stein C, Nassereldine H, Sorensen RJD; COVID-19 Forecasting Team. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis. Lancet. 2023;401(10379):833–842. doi:10.1016/S0140-6736(22)02465-5
  • Bg P, Rt C. Hyper-inflammation and complement in COVID-19. Am J Hematol. 2023;98(Suppl 4). doi:10.1002/ajh.26746
  • Aparisi Á, Martín-Fernández M, Ybarra-Falcón C, et al. Dyslipidemia and inflammation as hallmarks of oxidative stress in COVID-19: a follow-up study. Int J Mol Sci. 2022;23(23):15350. doi:10.3390/ijms232315350
  • Xiang N, Havers F, Chen T, et al. Use of national pneumonia surveillance to describe influenza A(H7N9) virus epidemiology, China, 2004–2013. Emerg Infect Dis. 2013;19(11):1784–1790. doi:10.3201/eid1911.130865
  • Ap Y, Jp L, Wq T, Hm L. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84. doi:10.1016/j.intimp.2020.106504
  • Fois AG, Paliogiannis P, Scano V, et al. The systemic inflammation index on admission predicts in-hospital mortality in COVID-19 patients. Molecules. 2020;25(23):5725. doi:10.3390/molecules25235725
  • Silverio R, Gonçalves DC, Andrade MF, Seelaender M. Coronavirus disease 2019 (COVID-19) and nutritional status: the missing link? Adv Nutr. 2021;12(3):682–692. doi:10.1093/advances/nmaa125
  • Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi:10.1016/j.jaut.2020.102433
  • Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11. doi:10.1186/s40779-020-00240-0
  • NIH COVID-19 Treatment Guidelines. COVID-19 treatment guidelines. Available from: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management-of-adults/. Accessed June 19, 2023.
  • Cegolon L, Pol R, Simonetti O, Larese Filon F, Luzzati R. Molnupiravir, nirmatrelvir/ritonavir, or sotrovimab for high-risk COVID-19 patients infected by the omicron variant: hospitalization, mortality, and time until negative swab test in real life. Pharmaceuticals. 2023;16(5):721. doi:10.3390/ph16050721
  • Chaudhari AM, Joshi M, Kumar D, et al. Evaluation of immune evasion in SARS-CoV-2 delta and omicron variants. Comput Struct Biotechnol J. 2022;20:4501–4516. doi:10.1016/j.csbj.2022.08.010
  • Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K. Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies. J Autoimmun. 2022;126:102779. doi:10.1016/j.jaut.2021.102779
  • Guo Y, Han J, Zhang Y, et al. SARS-CoV-2 omicron variant: epidemiological features, biological characteristics, and clinical significance. Front Immunol. 2022;13:877101. doi:10.3389/fimmu.2022.877101
  • Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020;221(11):1762–1769. doi:10.1093/infdis/jiaa150
  • Niu X, Li S, Li P, et al. Longitudinal analysis of T and B cell receptor repertoire transcripts reveal dynamic immune response in COVID-19 patients. Front Immunol. 2020;11:582010. doi:10.3389/fimmu.2020.582010
  • K A. Elucidating T cell and B cell responses to SARS-CoV-2 in humans: gaining insights into protective immunity and immunopathology. Cells. 2021;11(1). doi:10.3390/cells11010067
  • Du RH, Liu LM, Yin W, et al. Hospitalization and critical care of 109 decedents with COVID-19 pneumonia in Wuhan, China. Ann Am Thorac Soc. 2020;17(7):839–846. doi:10.1513/AnnalsATS.202003-225OC
  • Wang F, Hou H, Yao Y, et al. Systemically comparing host immunity between survived and deceased COVID-19 patients. Cell Mol Immunol. 2020;17(8):875–877. doi:10.1038/s41423-020-0483-y
  • Balzanelli MG, Distratis P, Dipalma G, et al. Immunity profiling of COVID-19 infection, dynamic variations of lymphocyte subsets, a comparative analysis on four different groups. Microorganisms. 2021;9(10):2036. doi:10.3390/microorganisms9102036
  • Kuri-Cervantes L, Pampena MB, Meng W, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020;5(49):eabd7114. doi:10.1126/sciimmunol.abd7114
  • Helding L, Carroll TL, Nix J, et al. The cytokine storm and COVID-19. J Med Virol. 2021;93(1). doi:10.1002/jmv.26232
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J Infect. 2020;80(6):607–613. doi:10.1016/j.jinf.2020.03.037
  • Xu Z, Jiang X, Dai X, Li B. The dynamic role of FOXP3+ tregs and their potential therapeutic applications during SARS-CoV-2 infection. Front Immunol. 2022;13:916411. doi:10.3389/fimmu.2022.916411
  • Plaza-Sirvent C, Zhao B, Bronietzki AW, et al. A central role for atg5 in microbiota-dependent Foxp3+ RORγt+ treg cell preservation to maintain intestinal immune homeostasis. Front Immunol. 2021;12:705436. doi:10.3389/fimmu.2021.705436
  • Pan W, Zhu S, Dai D, et al. MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat Commun. 2015;6(1):7096. doi:10.1038/ncomms8096
  • Neurath MF. COVID-19 and immunomodulation in IBD. Gut. 2020;69(7):1335–1342. doi:10.1136/gutjnl-2020-321269
  • C S, M C, B M, et al. Regulatory T cells as predictors of clinical course in hospitalised COVID-19 patients. Front Immunol. 2021:12. doi:10.3389/fimmu.2021.789735
  • Qu J, Zhu HH, Huang XJ, et al. Abnormal indexes of liver and kidney injury markers predict severity in COVID-19 patients. Infect Drug Resist. 2021;14:3029–3040. doi:10.2147/IDR.S321915
  • He X, Liu C, Peng J, et al. COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduct Target Ther. 2021;6(1):427. doi:10.1038/s41392-021-00822-x
  • Ammirati E, Lupi L, Palazzini M, et al. Prevalence, characteristics, and outcomes of COVID-19-associated acute myocarditis. Circulation. 2022;145(15):1123–1139. doi:10.1161/CIRCULATIONAHA.121.056817
  • Milenkovic M, Hadzibegovic A, Kovac M, et al. D-dimer, CRP, PCT, and IL-6 levels at admission to ICU can predict in-hospital mortality in patients with COVID-19 pneumonia. Oxid Med Cell Longev. 2022;2022:8997709. doi:10.1155/2022/8997709
  • T N, L D, W X, S Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4). doi:10.1111/jth.14768
  • Patel S, Truong GT, Rajan A, et al. Discharge disposition and clinical outcomes of patients hospitalized with COVID-19. Int J Infect Dis. 2023;130:1–5. doi:10.1016/j.ijid.2023.01.038
  • H C. Changes in mortality rate of the general population during the COVID-19 pandemic: an interrupted time series study in Korea. Int J Epidemiol. 2022;51(5). doi:10.1093/ije/dyac083
  • Assaad S, Avrillon V, Fournier ML, et al. High mortality rate in cancer patients with symptoms of COVID-19 with or without detectable SARS-COV-2 on RT-PCR. Eur J Cancer. 2020;135:251–259. doi:10.1016/j.ejca.2020.05.028
  • Li Q, Cao Y, Chen L, et al. Hematological features of persons with COVID-19. Leukemia. 2020;34(8):2163–2172. doi:10.1038/s41375-020-0910-1
  • Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost. 2014;12(11):1764–1775. doi:10.1111/jth.12730