973
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Staphylococcus aureus Induced Wound Infections Which Antimicrobial Resistance, Methicillin- and Vancomycin-Resistant: Assessment of Emergence and Cross Sectional Study

, , ORCID Icon, , ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 5335-5346 | Received 25 Apr 2023, Accepted 02 Aug 2023, Published online: 16 Aug 2023

References

  • Greaves P. Integumentary System. In: Histopathology of Preclinical Toxicity Studies. 3rd ed. Greaves P Ed. New York: Academic Press; 2007:10–67.
  • Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019;20:1811. doi:10.3390/ijms20081811
  • Mou K, Abdalla M, Wei DQ, et al. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Inform Med Unlocked. 2021;25:100675. doi:10.1016/j.imu.2021.100675
  • Herman TF, Bordoni B. Wound Classification. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Arif M, Sharaf M, Khan S, et al. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. J Biomater Sci Polym Ed. 2021;32:813–832. doi:10.1080/09205063.2020.1870323
  • Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn Wound Infections. Clin Microbiol Rev. 2006;19:403–434. doi:10.1128/CMR.19.2.403-434.2006
  • Williams FN, Herndon DN, Hawkins HK, et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13:R183. doi:10.1186/cc8170
  • Hadi AM, Mohammed Al-Alwany SH, Al-Khafaji ZA, Sharaf M, Mofed D, Khan TU. Molecular diagnosis of herpes virus type 1 by glycoprotein receptor primers. Gene Rep. 2022;26:101479. doi:10.1016/j.genrep.2021.101479
  • World Health Organization. Regional Office for South-East Asia. In: Regional Health Forum. Vol. 14. New Delhi: World Health Organization; 2010.
  • Wound infection: background, pathophysiology, etiology. 2021. https://emedicine.medscape.com/article/188988-overview.
  • Haque M, Sartelli M, McKimm J, Abu Bakar M. Health care-associated infections – an overview. Infect Drug Resist. 2018;11:2321–2333. doi:10.2147/IDR.S177247
  • Crum-Cianflone NF. Bacterial, Fungal, Parasitic, and Viral Myositis. Clin Microbiol Rev. 2008;21:473–494. doi:10.1128/CMR.00001-08
  • Gaupp R, Ledala N, Somerville G. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol. 2012;2. doi:10.3389/fcimb.2012.00002
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17:203–218. doi:10.1038/s41579-018-0147-4
  • Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46:S350–S359. doi:10.1086/533591
  • Hamad AA, Sharaf M, Hamza MA, Selim S, Hetta HF, El-Kazzaz W. Investigation of the bacterial contamination and antibiotic susceptibility profile of bacteria isolated from bottled drinking water. Microbiol Spectr. 2022;10:e01516–21. doi:10.1128/spectrum.01516-21
  • Ray GT, Suaya JA, Baxter R. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: a retrospective population-based study. BMC Infect Dis. 2013;13:252. doi:10.1186/1471-2334-13-252
  • Ramakrishnan K, Salinas RC, Higuita NIA. Skin and Soft Tissue Infections. Am Fam Physician. 2015;92:474–483.
  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661. doi:10.1128/CMR.00134-14
  • Sharaf M, Hamouda HI, Shabana S, et al. Design of lipid-based nanocarrier for drug delivery has a double therapy for six common pathogens eradication. Colloids Surf a Physicochem Eng Asp. 2021;625:126662. doi:10.1016/j.colsurfa.2021.126662
  • Stryjewski ME, Chambers HF. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46:S368–S377. doi:10.1086/533593
  • Choo EJ, Chambers HF. Treatment of methicillin-resistant Staphylococcus aureus bacteremia. Infect Chemother. 2016;48:267–273. doi:10.3947/ic.2016.48.4.267
  • Wu Q, Sabokroo N, Wang Y, Hashemian M, Karamollahi S, Kouhsari E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob Resist Infect Control. 2021;10:101. doi:10.1186/s13756-021-00967-y
  • Helen K, Ashlesha K. Vancomycin-Resistant Staphylococcus aureus: formidable threat or silence before the storm? J Infect Dis Epidemiol. 2019;5. doi:10.23937/2474-3658/1510093
  • Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. doi:10.3389/fcimb.2020.00107
  • Szymanek-Majchrzak K, Mlynarczyk A, Mlynarczyk G. Characteristics of glycopeptide-resistant Staphylococcus aureus strains isolated from inpatients of three teaching hospitals in Warsaw, Poland. Antimicrob Resist Infect Control. 2018;7:105. doi:10.1186/s13756-018-0397-y
  • Gardete S, Tomasz A. Mechanisms of Vancomycin Resistance in Staphylococcus aureus. J Clin Invest. 2014;124:2836–2840. doi:10.1172/JCI68834
  • Ventola CL. The Antibiotic Resistance Crisis: part 1: causes and Threats. Pharm Ther. 2015;40:277–283.
  • CDC what exactly is antibiotic resistance? Available From: https://www.cdc.gov/drugresistance/about.html. Accessed March 19, 2022.
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655. doi:10.1016/S0140-6736(21)02724-0
  • Basak S, Singh P, Rajurkar M. Multidrug resistant and extensively drug resistant bacteria: a study. Journal Pathog. 2016;2016:4065603. doi:10.1155/2016/4065603
  • Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Sweeney MT, Lubbers BV, Schwarz S, Watts JL. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J Antimicrob Chemother. 2018;73:1460–1463. doi:10.1093/jac/dky043
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-Resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:1–23. doi:10.1038/nrdp.2018.33
  • Raut S, Rijal KR, Khatiwada S, et al. Trend and Characteristics of Acinetobacter baumannii infections in patients attending universal college of medical sciences, Bhairahawa, Western Nepal: a longitudinal study of 2018. Infect Drug Resist. 2020;13:1631–1641. doi:10.2147/IDR.S257851
  • Pillai MM, Latha R, Sarkar G. Detection of methicillin resistance in Staphylococcus aureus by polymerase Chain reaction and conventional methods: a comparative study. J Lab Physicians. 2012;4:83. doi:10.4103/0974-2727.105587
  • Weinstein MP. Clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing; 2021.
  • Weinstein MP, Lewis JS. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. J Clin Microbiol. 2020;58:e01864–19. doi:10.1128/JCM.01864-19
  • Tiwari HK, Sen MR. Emergence of Vancomycin Resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006;6:156. doi:10.1186/1471-2334-6-156
  • Sy CL, Huang T-S, Chen CS, et al. Synergy of β-lactams with vancomycin against methicillin-resistant Staphylococcus aureus: correlation of disk diffusion and checkerboard methods. J Clin Microbiol. 2016;54:565–568. doi:10.1128/JCM.01779-15
  • Stokes EJ, Ridgeway GL, Wren MWD. Clinical Microbiology. 7th ed. London: Hodder Education Publishers; 1993.
  • Sandhu R, Dahiya S, Sayal P. Evaluation of multiple antibiotic resistance (MAR) index and doxycycline susceptibility of Acinetobacter species among inpatients. Ind Jour of Microb Res. 2016;3:299. doi:10.5958/2394-5478.2016.00064.9
  • Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol. 2016;65:261–271. doi:10.1099/jmm.0.000229
  • Kejela T, Bacha K. Prevalence and antibiotic susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) among primary school children and prisoners in Jimma Town, Southwest Ethiopia. Ann Clin Microbiol Antimicrob. 2013;12:11. doi:10.1186/1476-0711-12-11
  • Osundiya OO, Oladele RO, Oduyebo OO. Multiple antibiotic resistance (MAR) Indices of Pseudomonas and Klebsiella species isolates in Lagos university teaching hospital. African J Clin Exp Microbiol. 2013;14:164–168. doi:10.4314/ajcem.v14i3.8
  • Tefera S, Awoke T, Mekonnen D. Methicillin and vancomycin resistant Staphylococcus aureus and associated factors from surgical ward inpatients at debre markos referral hospital, Northwest Ethiopia. Infect Drug Resist. 2021;14:3053–3062. doi:10.2147/IDR.S324042
  • Raut S, Bajracharya K, Adhikari J, Pant SS, Adhikari B. Prevalence of methicillin resistant Staphylococcus aureus in Lumbini medical college and teaching hospital, Palpa, Western Nepal. BMC Res Notes. 2017;10:187. doi:10.1186/s13104-017-2515-y
  • Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin Treatment of Methicillin-Resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003;37:1257–1260. doi:10.1086/377501
  • Maharjan B, Karki ST, Maharjan R. Antibiotic susceptibility pattern of Staphylococcus aureus isolated from pus/wound swab from children attending international friendship children’s hospital. Nepal J Biotechnol. 2021;9:8–17. doi:10.3126/njb.v9i1.38645
  • Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–791. doi:10.1128/CMR.10.4.781
  • Taylor TA, Unakal CG. Staphylococcus aureus. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Almuhayawi MS, Gattan HS, Alruhaili MH, et al. Molecular Profile and the effectiveness of antimicrobials drugs against staphylococcus aureus and pseudomonas aeruginosa in the diagnostic approaches of otitis infection. Infect Drug Resist. 2023;Volume 16:4397–4408. doi:10.2147/IDR.S418685
  • Liu GY. Molecular Pathogenesis of Staphylococcus aureus Infection. Pediatr Res. 2009;65:71R–77R. doi:10.1203/PDR.0b013e31819dc44d
  • El Amin NM, Faidah HS. Methicillin-resistant Staphylococcus aureus in the western region of Saudi Arabia: prevalence and antibiotic susceptibility pattern. Ann Saudi Med. 2012;32:513–516. doi:10.5144/0256-4947.2012.513
  • Almuhayawi MS, Alruhaili MH, Gattan HS, et al. In silico molecular modeling of cold pressed garden cress (Lepidium sativum L.) seed oil toward the binding pocket of antimicrobial resistance Staphylococcus aureus DNA-gyrase complexes. Eur Rev Med Pharmacol Sci. 2023;27:4.
  • Alkhodari SA, Elmanama AA. Multidrug resistance of uropathogens at governmental hospitals in the gaza strip/Palestine. Int Arab J Antimicrob Agents. 2021;11. doi:10.3823/855
  • Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep. 2020;10:12689. doi:10.1038/s41598-020-69058-z
  • Hasan R, Acharjee M, Noor R. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Tzu Chi Med J. 2016;28:49–53. doi:10.1016/j.tcmj.2016.03.002
  • Moremi N, Claus H, Vogel U, Mshana SE. The role of patients and healthcare workers Staphylococcus aureus nasal colonization in occurrence of surgical site infection among patients admitted in two centers in Tanzania. Antimicrob Resist Infect Control. 2019;8:102. doi:10.1186/s13756-019-0554-y
  • Elnosary M, Aboelmagd H, Sofy MR, Sofy A, Elshazly E. Antiviral and antibacterial properties of synthesis silver nanoparticles with nigella arvensis aqueous extract. Egypt J Chem. 2022;1:1. doi:10.21608/ejchem.2022.159976.6894
  • Collins AS. Preventing Health Care–Associated Infections. In: Hughes RG, editor. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): Advances in Patient Safety; Agency for Healthcare Research and Quality (US); 2008.
  • Kishore S, Verma D, Siddique M. Comparison of in-vitro activities of linezolid and vancomycin against Staphylococcus aureus isolated from a tertiary care hospital. J Clin Diagn Res. 2014;8:DC12–DC15. doi:10.7860/JCDR/2014/7751.4338
  • Çomoğlu Ş. Determination of in vitro activity of linezolid in resistance gram positive bacteria by E-test method. Haydarpasa Numune Med J. 2018. doi:10.14744/hnhj.2018.30085
  • Smith T, Wolff KA, Nguyen L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr Top Microbiol Immunol. 2013;374:53–80. doi:10.1007/82_2012_279
  • Elnosary ME, Aboelmagd HA, Habaka MA, Salem SR, El-Naggar ME. Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria. Int J Biol Macromol. 2023;224:871–880. doi:10.1016/j.ijbiomac.2022.10.173
  • Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018;73:1138–1151. doi:10.1093/jac/dkx506
  • Miragaia M, Zhou M, Wang W, Sun X, Yarden O, Li S. Factors contributing to the evolution of meca-mediated β-lactam resistance in staphylococci: update and new insights from whole genome sequencing (WGS). Front Microbiol. 2018;9:9. doi:10.3389/fmicb.2018.00009
  • Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23:99–139. doi:10.1128/CMR.00042-09
  • Mama M, Aklilu A, Misgna K, Tadesse M, Alemayehu E. Methicillin- and inducible clindamycin-resistant staphylococcus aureus among patients with wound infection attending arba minch hospital, South Ethiopia. Int J Microbiol. 2019;2019:e2965490. doi:10.1155/2019/2965490
  • Baltekin Ö, Boucharin A, Tano E, Andersson DI, Elf J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc Natl Acad Sci. 2017;114:9170–9175. doi:10.1073/pnas.1708558114
  • Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics. 2019;9:49. doi:10.3390/diagnostics9020049
  • Su M, Satola SW, Read TD. Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol. 2019;57:e01405–18. doi:10.1128/JCM.01405-18
  • van Hoek A, Mevius D, Guerra B, Mullany P, Roberts A, Aarts H. Acquired Antibiotic Resistance Genes: an Overview. Front Microbiol. 2011;2:2. doi:10.3389/fmicb.2011.00002
  • Fuda C, Suvorov M, Vakulenko SB, Mobashery S. The basis for resistance to beta-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem. 2004;279(39):40802–40806. doi:10.1074/jbc.M403589200
  • Lim D, Strynadka NC. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol. 2002;9(11):870–876. doi:10.1038/nsb858
  • Lakhundi S, Zhang K. Methicillin-resistant staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31:e00020–18. doi:10.1128/CMR.00020-18