271
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Study on Antibacterial Activity and Mechanism of Improved Dian Dao San Against Cutibacterium acnes (C. acnes)

, , , , , , , ORCID Icon & show all
Pages 4965-4975 | Received 18 May 2023, Accepted 26 Jul 2023, Published online: 01 Aug 2023

References

  • Eichenfield DZ, Sprague J, Eichenfield LF. Management of acne vulgaris: a review. JAMA. 2021;326(20):2055–2067. doi:10.1001/jama.2021.17633
  • Xiang Y, Lu J, Mao C, et al. Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci Adv. 2023;9(10):eadf0854. doi:10.1126/sciadv.adf0854
  • Habeshian KA, Cohen BA. Current issues in the treatment of Acne vulgaris. Pediatrics. 2020;145(Suppl 2):S225–S230. doi:10.1542/peds.2019-2056L
  • Oulès B, Philippeos C, Segal J, et al. Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nat Commun. 2020;11(1):5067. doi:10.1038/s41467-020-18784-z
  • Do TH, Ma F, Andrade PR, et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol. 2022;7(73):eabo2787. doi:10.1126/sciimmunol.abo2787
  • Réno B, Dagnelie MA, Khammari A, Corvec S. The skin microbiome: a new actor in inflammatory acne. Am J Clin Dermatol. 2020;21(Suppl 1):18–24. doi:10.1007/s40257-020-00531-1
  • Castillo DE, Nanda S, Keri JE. Propionibacterium (Cutibacterium) acnes bacteriophage therapy in acne: current evidence and future perspectives. Dermatol Ther. 2019;9(1):19–31. doi:10.1007/s13555-018-0275-9
  • Wang S, Jiang R, Meng T, et al. Stem cell membrane-coated isotretinoin for acne treatment. J Nanobiotechnology. 2020;18(1):106. doi:10.1186/s12951-020-00664-9
  • Chovatiya R. Acne treatment. JAMA. 2021;326(20):2087. doi:10.1001/jama.2021.16599
  • Bagatin E, Costa CS. The use of isotretinoin for acne - an update on optimal dosing, surveillance, and adverse effects. Expert Rev Clin Pharmacol. 2020;13(8):885–897. doi:10.1080/17512433.2020.1796637
  • Bunick CG, Keri J, Tanaka SK, et al. Antibacterial mechanisms and efficacy of sarecycline in animal models of infection and inflammation. Antibiotics. 2021;10(4):439. doi:10.3390/antibiotics10040439
  • Maeda T, Iwasawa J, Kotani H, et al. High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli. Nat Commun. 2020;11(1):5970. doi:10.1038/s41467-020-19713-w
  • Schafer F, Fich F, Lam M, Gárate C, Wozniak A, Garcia P. Antimicrobial susceptibility and genetic characteristics of Propionibacterium acnes isolated from patients with acne. Int J Dermatol. 2013;52(4):418–425. doi:10.1111/j.1365-4632.2011.05371.x
  • Wu Z, Deng X, Hu Q, et al. Houttuynia cordata Thunb: an ethnopharmacological review. Front Pharmacol. 2021;12:714694. doi:10.3389/fphar.2021.714694
  • Li J, Feng S, Liu X, et al. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria. Front Pharmacol. 2022;13:837907. doi:10.3389/fphar.2022.837907
  • Liu X, An L, Zhou Y, Peng W, Huang C. Antibacterial mechanism of Patrinia scabiosaefolia against methicillin resistant Staphylococcus epidermidis. Infect Drug Resist. 2023;16:1345–1355. doi:10.2147/IDR.S398227
  • Ren S, Wang W, Jia M, et al. Proteomic analysis of the antibacterial effect of improved DianDaoSan against Propionibacteriu macnes. Evid Based Complement Alternat Med. 2022;2022. doi:10.1155/2022/3855702
  • Guo Y, Liu Y, Zhao S, et al. Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nat Commun. 2021;12(1):7094. doi:10.1038/s41467-021-27428-9
  • Piccini C, Cai G, Dias MC, et al. Olive varieties under UV-B stress show distinct responses in terms of antioxidant machinery and isoform/activity of RubisCO. Int J Mol Sci. 2021;22(20):11214. doi:10.3390/ijms222011214
  • Liu L, Zeng X, Zheng J, Zou Y, Qiu S, Dai Y. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: a review. Microbiol Res. 2022;262:127102. doi:10.1016/j.micres.2022.127102
  • Arnold PK, Jackson BT, Paras KI, et al. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature. 2022;603(7901):477–481. doi:10.1038/s41586-022-04475-w
  • Kang W, Suzuki M, Saito T, Miyado K. Emerging role of TCA cycle-related enzymes in human diseases. Int J Mol Sci. 2021;22(23):13057. doi:10.3390/ijms222313057
  • Qu Q, Wang J, Cui W, et al. In vitro activity and in vivo efficacy of isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target. PLoS One. 2019;14(12):e0226260. doi:10.1371/journal.pone.0226260
  • Dessinioti C, Katsambas A. Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol. 2017;35(2):163–167. doi:10.1016/j.clindermatol.2016.10.008
  • Liu X, An L, Ren S, Zhou Y, Peng W. Comparative proteomic analysis reveals antibacterial mechanism of Patrinia scabiosaefolia against methicillin resistant Staphylococcus epidermidis. Infect Drug Resist. 2022;15:883–893. doi:10.2147/IDR.S350715
  • Li S, Sun W, Zhang K, et al. Selenium deficiency induces spleen pathological changes in pigs by decreasing selenoprotein expression, evoking oxidative stress, and activating inflammation and apoptosis. J Anim Sci Biotechnol. 2021;12(1):65. doi:10.1186/s40104-021-00587-x
  • He Y, Yang Q, Zhang T, et al. Pathogenic characteristics of Th17 cells based on the IL-17 signaling pathway in the regulation of sebaceous gland lipoprotein metabolism in an acne rat model. Iran J Immunol. 2021;18(3):203–209. doi:10.22034/iji.2021.88231.1855
  • Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–454. doi:10.1038/nrmicro3032
  • Jing M, Han G, Wan J, et al. Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene. Sci Total Environ. 2020;736:139567. doi:10.1016/j.scitotenv.2020.139567
  • Li Z, Shao X, Wei Y, et al. Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components. Appl Microbiol Biotechnol. 2020;104(5):2163–2178. doi:10.1007/s00253-020-10382-9
  • Chen J, Tang C, Zhang R, et al. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J Ethnopharmacol. 2020;253:112652. doi:10.1016/j.jep.2020.112652