158
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Pseudolaric Acid A: A Promising Antifungal Agent Against Prevalent Non-albicans Candida Species

ORCID Icon, , ORCID Icon, , , , & show all
Pages 5953-5964 | Received 02 May 2023, Accepted 18 Aug 2023, Published online: 07 Sep 2023

References

  • Bilal H, Shafiq M, Hou B, et al. Distribution and antifungal susceptibility pattern of Candida species from mainland China: a systematic analysis. Virulence. 2022;13(1):1573–1589. doi:10.1080/21505594.2022.2123325
  • Kotey FA-O, Dayie NT, Tetteh-Uarcoo PB, Donkor EA-O. Candida bloodstream infections: changes in epidemiology and increase in drug resistance. Infect Dis. 2021;14:1–5. doi:10.1177/11786337211026927.
  • Zhang W, Song X, Wu H, and Zheng R. Epidemiology, risk factors and outcomes of Candida albicans vs non- albicans candidaemia in adult patients in Northeast China. Epidemiol Infect. 2019;147:e277. doi:10.1017/S0950268819001638
  • Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HA-O. Non-albicans Candida species: immune response, evasion mechanisms, and new plant-derived alternative therapies. J Fungi. 2023;9(1):11. doi:10.3390/jof9010011
  • Pfaller MA, Carvalhaes CG, DeVries S, Huband MD, Castanheira M. Elderly versus nonelderly patients with invasive fungal infections: species distribution and antifungal resistance, SENTRY antifungal surveillance program 2017–2019. Diagn Microbiol Infect Dis. 2022;102(4):115627. doi:10.1016/j.diagmicrobio.2021.115627
  • Xiao M, Chen SC, Kong F, et al. Distribution and antifungal susceptibility of Candida species causing candidemia in China: an update from the CHIF-NET study. J Infect Dis. 2020;221(Suppl 2):S139–S147. doi:10.1093/infdis/jiz573
  • Tsay SV, Mu Y, Williams S, et al. Burden of candidemia in the United States, 2017. Clin Infect Dis. 2020;71(9):e449–e453. doi:10.1093/cid/ciaa193
  • Aldejohann AM, Herz M, Martin R, Walther G, Kurzai O. Emergence of resistant Candida glabrata in Germany. JAC Antimicrob Resist. 2021;3(3):dlab122. doi:10.1093/jacamr/dlab122
  • Al-Musawi TS, Alkhalifa WA, Alasaker NA, Rahman JU, Alnimr AM. A seven-year surveillance of Candida bloodstream infection at a university hospital in KSA. J Taibah Univ Med Sci. 2021;16(2):184–190. doi:10.1016/j.jtumed.2020.12.002.
  • Chapman B, Slavin M, Marriott D, et al. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017;72(4):1103–1108. doi:10.1093/jac/dkx047
  • Wang Y, Fan X, Wang H, et al. Continual decline in azole susceptibility rates in Candida tropicalis over a 9-year period in China. Front Microbiol. 2021;12:702839. doi:10.3389/fmicb.2021.702839
  • Khalifa HO, Watanabe A, Kamei K. Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal-human transmission of C. tropicalis infection. Clin Microbiol Infect. 2022;28(2):302 e305–302 e308. doi:10.1016/j.cmi.2021.10.004
  • Canturk Z. Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans. J Food Drug Anal. 2018;26(1):439–443. doi:10.1016/j.jfda.2016.12.014
  • Behbehani JM, Irshad M, Shreaz S, Karched M. Synergistic effects of tea polyphenol epigallocatechin 3-O-gallate and azole drugs against oral Candida isolates. J Mycol Med. 2019;29(2):158–167. doi:10.1016/j.mycmed.2019.01.011
  • Liu Y, Ren H, Wang D, Zhang M, Sun S, and Zhao Y. The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation. Biomed Pharmacother. 2020;130:110580. doi:10.1016/j.biopha.2020.110580
  • Pan M, Wang Q, Cheng T, et al. Paeonol assists fluconazole and amphotericin B to inhibit virulence factors and pathogenicity of Candida albicans. Biofouling. 2021;37(8):922–937. doi:10.1080/08927014.2021.1985473
  • Xu Y, Quan H, Wang Y, et al. Requirement for ergosterol in berberine tolerance underlies synergism of fluconazole and berberine against fluconazole-resistant Candida albicans isolates. Front Cell Infect Microbiol. 2017;7:491. doi:10.3389/fcimb.2017.00491
  • Chiu P, Leung LT, Ko BC. Pseudolaric acids: isolation, bioactivity and synthetic studies. Nat Prod Rep. 2010;27(7):1066–1083. doi:10.1039/b906520m
  • Zhu B, Li Z, Yin H, et al. Synergistic antibiofilm effects of pseudolaric acid A combined with fluconazole against Candida albicans via inhibition of adhesion and Yeast-To-Hypha transition. Microbiol Spectr. 2022;10(2):e0147821. doi:10.1128/spectrum.01478-21
  • Guo N, Ling G, Liang X, et al. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans. Mycoses. 2011;54(5):e400–e406. doi:10.1111/j.1439-0507.2010.01935.x
  • Kollu NV, LaJeunesse DR. Cell rupture and morphogenesis control of the dimorphic yeast Candida albicans by nanostructured surfaces. ACS Omega. 2021;6(2):1361–1369. doi:10.1021/acsomega.0c04980
  • Chakraborty M, Banu H, Gupta MK. Epidemiology and antifungal susceptibility of Candida Species causing blood stream infections: an Eastern India perspective. J Assoc Physicians India. 2021;69(8):11–12.
  • Reda NM, Hassan RM, Salem ST, Yousef RHA. Prevalence and species distribution of Candida bloodstream infection in children and adults in two teaching university hospitals in Egypt: first report of Candida kefyr. Infection. 2022;51(2):389–395. doi:10.1007/s15010-022-01888-7
  • Dogan O, Yesilkaya A, Menekse S, et al. Effect of initial antifungal therapy on mortality among patients with bloodstream infections with different Candida species and resistance to antifungal agents: a multicentre observational study by the Turkish Fungal Infections Study Group. Int J Antimicrob Agents. 2020;56(1):105992. doi:10.1016/j.ijantimicag.2020.105992
  • Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021;11(1):222–256. doi:10.7150/thno.49860
  • Xu DD, Du LL. Fission yeast autophagy machinery. Cells. 2022;11(7):1086. doi:10.3390/cells11071086
  • Shimamura S, Miyazaki T, Tashiro M, et al. Autophagy-Inducing Factor Atg1 Is Required for Virulence in the Pathogenic Fungus Candida glabrata. Front Microbiol. 2019;10:27. doi:10.3389/fmicb.2019.00027
  • Hu Y, Reggiori F. Molecular regulation of autophagosome formation. Biochem Soc Trans. 2022;50(1):55–69. doi:10.1042/BST20210819
  • Liu J, Wu XD, Li W, Yuan Z, Yang K, Zhao QS. Discovery of pseudolaric acid A as a new Hsp90 inhibitor uncovers its potential anticancer mechanism. Bioorg Chem. 2021;112:104963. doi:10.1016/j.bioorg.2021.104963
  • Wang B, Chen Z, Yu F, et al. Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol. 2016;37(1):1–6. doi:10.1007/s13277-015-4142-3
  • Pais P, Califórnia R, Galocha M, et al. Candida glabrata transcription factor Rpn4 mediates fluconazole resistance through regulation of ergosterol biosynthesis and plasma membrane permeability. Antimicrob Agents Chemother. 2020;64(9):e00554. doi:10.1128/AAC.00554-20