258
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Mycobacterium tuberculosis Rv0494 Protein Contributes to Mycobacterial Persistence

ORCID Icon, , , , , , & show all
Pages 4755-4762 | Received 06 May 2023, Accepted 14 Jul 2023, Published online: 22 Jul 2023

References

  • Hingley-Wilson SM, Ma N, Hu Y, et al. Loss of phenotypic inheritance associated with ydcI mutation leads to increased frequency of small, slow persisters in Escherichia coli. Proc Natl Acad Sci U S A. 2020;117(8):4152–4157.
  • Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333(6049):1630–1632.
  • Li J, Ji L, Shi W, et al. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. J Antimicrob Chemother. 2013;68(11):2477–2481.
  • Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8):581–591.
  • Papavinasasundaram KG, Anderson C, Brooks PC, et al. Slow induction of RecA by DNA damage in Mycobacterium tuberculosis. Microbiology. 2001;147(Pt 12):3271–3279.
  • Rohde K, Yates RM, Purdy GE, et al. Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev. 2007;219:37–54.
  • Via LE, Lin PL, Ray SM, et al. Tuberculous granulomas are hypoxic in Guinea pigs, rabbits, and nonhuman primates. Infect Immun. 2008;76(6):2333–2340.
  • Martini MC, Zhou Y, Sun H, et al. Defining the transcriptional and post-transcriptional landscapes of Mycobacterium smegmatis in aerobic growth and hypoxia. Front Microbiol. 2019;10:591.
  • Rodrigue S, Provvedi R, Jacques PE, et al. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2006;30(6):926–941.
  • Agari Y, Agari K, Sakamoto K, et al. TetR-family transcriptional repressor Thermus thermophilus FadR controls fatty acid degradation. Microbiology. 2011;157(Pt 6):1589–1601.
  • Brown RN, Gulig PA. Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice. J Bacteriol. 2008;190(23):7633–7644.
  • Casali N, White AM, Riley LW. Regulation of the Mycobacterium tuberculosis mce1 operon. J Bacteriol. 2006;188(2):441–449.
  • Georgi T, Engels V, Wendisch VF. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol. 2008;190(3):963–971.
  • Santangelo MP, Blanco FC, Bianco MV, et al. Study of the role of Mce3R on the transcription of mce genes of Mycobacterium tuberculosis. BMC Microbiol. 2008;8:38.
  • Yousuf S, Angara R, Vindal V, et al. Rv0494 is a starvation-inducible, auto-regulatory FadR-like regulator from Mycobacterium tuberculosis. Microbiology. 2015;161(Pt 3):463–476.
  • Micklinghoff JC, Breitinger KJ, Schmidt M, et al. Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis. J Bacteriol. 2009;191(23):7260–7269.
  • Biswas RK, Dutta D, Tripathi A, et al. Identification and characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from Mycobacterium tuberculosis. Microbiology. 2013;159(Pt 5):913–923.
  • Minch KJ, Rustad TR, Peterson EJ, et al. The DNA-binding network of Mycobacterium tuberculosis. Nat Commun. 2015;6:5829.
  • Bardarov S, Bardarov S, Pavelka MS, et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology. 2002;148(Pt 10):3007–3017.
  • Jain P, Hsu T, Arai M, et al. Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. mBio. 2014;5(3):e01245–14.
  • Stover CK, de la Cruz VF, Fuerst TR, et al. New use of BCG for recombinant vaccines. Nature. 1991;351(6326):456–460.
  • Ullah N, Hao L, Banga Ndzouboukou JL, et al. Label-free comparative proteomics of differentially expressed Mycobacterium tuberculosis protein in rifampicin-related drug-resistant strains. Pathogens. 2021;10(5):54.
  • Jenkins HE, Zignol M, Cohen T. Quantifying the burden and trends of isoniazid resistant tuberculosis, 1994-2009. PLoS One. 2011;6(7):e22927.
  • Furio V, Moreno-Molina M, Chiner-Oms A, et al. An evolutionary functional genomics approach identifies novel candidate regions involved in isoniazid resistance in Mycobacterium tuberculosis. Commun Biol. 2021;4(1):1322.
  • Yousuf S, Angara RK, Roy A, et al. Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadR(E. coli). Microbiology. 2018;164(9):1133–1145.
  • Jain P, Weinrick BC, Kalivoda EJ, et al. Dual-reporter Mycobacteriophages (Φ2DRMs) reveal preexisting Mycobacterium tuberculosis persistent cells in human sputum. mBio. 2016;7(5):e01023–16.