215
Views
0
CrossRef citations to date
0
Altmetric
CASE REPORT

Clostridium ramosum Bacteremia in an Immunocompetent Patient with SARS-CoV-2 Infection: A Case Report

, , , , &
Pages 4455-4461 | Received 15 May 2023, Accepted 01 Jul 2023, Published online: 08 Jul 2023

References

  • Tally FP, Armfield AY, Dowell VR, et al. Susceptibility of Clostridium ramosum to antimicrobial agents. Antimicrob Agents Chemother. 1974;5(6):589–593. doi:10.1128/AAC.5.6.589
  • Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013;15(10):2631–2641. doi:10.1111/1462-2920.12173
  • Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, et al. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50(D1):D801–d807. doi:10.1093/nar/gkab902
  • Senda S, Fujiyama Y, Ushijima T, et al. Clostridium ramosum, an IgA protease-producing species and its ecology in the human intestinal tract. Microbiol Immunol. 1985;29(11):1019–1028. doi:10.1111/j.1348-0421.1985.tb00892.x
  • Shinzato T, Yonaha T, Oshiro Y, et al. Clostridium ramosum bacteremia: a case series at a general acute care hospital. J Infect Chemother. 2023;29(1):78–81. doi:10.1016/j.jiac.2022.09.009
  • Forrester JD, Spain DA. Clostridium ramosum bacteremia: case report and literature review. Surg Infect (Larchmt). 2014;15(3):343–346. doi:10.1089/sur.2012.240
  • Lavigne JP, Bouziges N, Sotto A, et al. Spondylodiscitis due to clostridium ramosum infection in an immunocompetent elderly patient. J Clin Microbiol. 2003;41(5):2223–2226. doi:10.1128/JCM.41.5.2223-2226.2003
  • Dahya V, Ramgopal M, Collin B, et al. Clostridium ramosum osteomyelitis in an immunocompetent patient after traumatic injury. Infect Dis Clin Pract. 2015;23:102–104. doi:10.1097/IPC.0000000000000209
  • Zakham F, Pillonel T, Brunel AS, et al. Molecular diagnosis and enrichment culture identified a septic pseudoarthrosis due to an infection with Erysipelatoclostridium ramosum. Int J Infect Dis. 2019;81:167–169. doi:10.1016/j.ijid.2019.02.001
  • Milosavljevic MN, Kostic M, Milovanovic J, et al. Antimicrobial treatment of Erysipelatoclostridium ramosum invasive infections: a systematic review. Rev Inst Med Trop Sao Paulo. 2021;63:e30. doi:10.1590/s1678-9946202163030
  • Assimakopoulos SF, Eleftheriotis G, Lagadinou M, et al. SARS CoV-2-induced viral sepsis: the role of gut barrier dysfunction. Microorganisms. 2022;10(5):1050. doi:10.3390/microorganisms10051050
  • Cao J, Wang C, Zhang Y, et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes. 2021;13(1):1–21. doi:10.1080/19490976.2021.1887722
  • Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944–955.e8. doi:10.1053/j.gastro.2020.05.048
  • Gaibani P, D’Amico F, Bartoletti M, et al. The gut microbiota of critically ill patients with COVID-19. Front Cell Infect Microbiol. 2021;11:670424. doi:10.3389/fcimb.2021.670424
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–w296. doi:10.1093/nar/gkab301
  • Hennequin C, Collignon A, Karjalainen T. Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress. Microb Pathog. 2001;31(5):255–260. doi:10.1006/mpat.2001.0468
  • Chitayat S, Adams JJ, Smith SP. NMR assignment of backbone and side chain resonances for a dockerin-containing C-terminal fragment of the putative mu-toxin from Clostridium perfringens. Biomol NMR Assign. 2007;1(1):13–15. doi:10.1007/s12104-007-9002-7
  • Rumpel S, Razeto A, Pillar CM, et al. Structure and DNA-binding properties of the cytolysin regulator CylR2 from Enterococcus faecalis. EMBO j. 2004;23(18):3632–3642. doi:10.1038/sj.emboj.7600367
  • Rechner PM, Agger WA, Mruz K, et al. Clinical features of clostridial bacteremia: a review from a rural area. Clin Infect Dis. 2001;33(3):349–353. doi:10.1086/321883
  • Kosowska K, Reinholdt J, Rasmussen LK, et al. The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidase. J Biol Chem. 2002;277(14):11987–11994. doi:10.1074/jbc.M110883200
  • Gollapudi LA, Narurkar R, Wang G, et al. Clostridium ramosum (C. ramosum) Bacteremia: single-center Study. Open Forum Infect Dis. 2017;4(suppl_1):S556–S556. doi:10.1093/ofid/ofx163.1446
  • Legaria MC, García SD, Tudanca V, et al. Clostridium ramosum rapidly identified by MALDI-TOF MS. A rare gram-variable agent of bacteraemia. Access Microbiol. 2020;2(8):acmi000137. doi:10.1099/acmi.0.000137
  • Leal J, Gregson DB, Ross T, et al. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000–2006. J Infect. 2008;57(3):198–203. doi:10.1016/j.jinf.2008.06.018
  • Mormeneo Bayo S, Palacián Ruíz MP, Moreno Hijazo M, et al. Bacteremia during COVID-19 pandemic in a tertiary hospital in Spain. Enferm Infecc Microbiol Clin. 2021;40(4):183–186. doi:10.1016/j.eimc.2021.01.015
  • Sturm LK, Saake K, Roberts PB, et al. Impact of COVID-19 pandemic on hospital onset bloodstream infections (HOBSI) at a large health system. Am J Infect Control. 2022;50(3):245–249. doi:10.1016/j.ajic.2021.12.018
  • Bauer KA, Puzniak LA, Yu KC, et al. Epidemiology and outcomes of culture-positive bloodstream pathogens prior to and during the SARS-CoV-2 pandemic: a multicenter evaluation. BMC Infect Dis. 2022;22(1):841. doi:10.1186/s12879-022-07810-8
  • Pérez-Granda MJ, Carrillo CS, Rabadán PM, et al. Increase in the frequency of catheter-related bloodstream infections during the COVID-19 pandemic: a plea for control. J Hosp Infect. 2022;119:149–154. doi:10.1016/j.jhin.2021.09.020
  • Tena-Garitaonaindia M, Arredondo-Amador M, Mascaraque C, et al. Modulation of intestinal barrier function by glucocorticoids: lessons from preclinical models. Pharmacol Res. 2022;177:106056. doi:10.1016/j.phrs.2022.106056