215
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Clinical and Microbiological Characteristics of Klebsiella pneumoniae Co-Infections in Pulmonary Tuberculosis: A Retrospective Study

, , , , , , & show all
Pages 7175-7185 | Received 16 May 2023, Accepted 21 Sep 2023, Published online: 07 Nov 2023

References

  • Organization WH. Global tuberculosis report 2021; 2022; Available from: https://www.who.int/publications/i/item/9789240037021. Accessed July 14, 2023.
  • Hsu D, Irfan M, Jabeen K, et al. Post tuberculosis treatment infectious complications. Int J Infect Dis. 2020;92S:S41–S45.
  • Hernandez-Pando R, Orozco H, Aguilar D. Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz). 2009;57(5):355–367. doi:10.1007/s00005-009-0042-9
  • Ishikawa S, Igari H, Yamagishi K, Takayanagi S, Yamagishi F. Microorganisms isolated at admission and treatment outcome in sputum smear-positive pulmonary tuberculosis. J Infect Chemother. 2019;25(1):45–49. doi:10.1016/j.jiac.2018.10.005
  • Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical Epidemiology, Risk Factors, and Control Strategies of Infection. Front Microbiol. 2021;12:750662. doi:10.3389/fmicb.2021.750662
  • Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43(2):123–144. doi:10.1093/femsre/fuy043
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208. doi:10.1056/NEJMoa1306801
  • Udeani TKC, Moses J, Uzoechina A, Okwori AEJ, Okwosa CN. Microbial aetiologic agents associated with pneumonia in immunocompromised hosts. Afr J Infect Dis. 2010;4(1):1–6. doi:10.4314/ajid.v4i1.55084
  • Buchera FS, Silago V, Japhet G, et al. Predominance of Other Pathogenic Bacteria among Presumptive Tuberculosis Cases Attending Tuberculosis Clinics in Mwanza, Tanzania: a Cross-Sectional Laboratory-Based Study. Microorganisms. 2022;10(4):4. doi:10.3390/microorganisms10040703
  • Rafailidis PI, Kapaskelis A, Christodoulou C, Galani E, Falagas ME, Concurrent M. tuberculosis, Klebsiella pneumoniae, and Candida albicans infection in liver metastasis of bowel carcinoma. Eur J Clin Microbiol Infect Dis. 2008;27(8):753–755. doi:10.1007/s10096-008-0488-4
  • Arora AA, Krishnaswamy UM, Moideen RP, Padmaja MS. Tubercular and bacterial coinfection: a case series. Lung India. 2015;32(2):172–174. doi:10.4103/0970-2113.152645
  • Iliyasu G, Mohammad AB, Yakasai AM, Dayyab FM, Oduh J, Habib AG. Gram-negative bacilli are a major cause of secondary pneumonia in patients with pulmonary tuberculosis: evidence from a cross-sectional study in a tertiary hospital in Nigeria. Trans R Soc Trop Med Hyg. 2018;112(5):252–254. doi:10.1093/trstmh/try044
  • Attia EF, Pho Y, Nhem S, et al. Tuberculosis and other bacterial co-infection in Cambodia: a single center retrospective cross-sectional study. BMC Pulm Med. 2019;19(1):60. doi:10.1186/s12890-019-0828-4
  • Kim SB, Lee W-Y, Lee J-H, et al. A variety of bacterial aetiologies in the lower respiratory tract at patients with endobronchial tuberculosis. PLoS One. 2020;15(6):e0234558. doi:10.1371/journal.pone.0234558
  • Wang Y, Zhang Q, Jin Y, Jin X, Yu J, Wang K. Epidemiology and antimicrobial susceptibility profiles of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli in China. Braz J Microbiol. 2019;50(3):669–675. doi:10.1007/s42770-019-00081-7
  • Rahmat Ullah S, Majid M, Rashid MI, Mehmood K, Andleeb S. Immunoinformatics Driven Prediction of Multiepitopic Vaccine Against and Coinfection and Its Validation via In Silico Expression. Int J Pept Res Ther. 2021;27(2):987–999. doi:10.1007/s10989-020-10144-1
  • Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188. doi:10.1038/s41467-021-24448-3
  • Zhang Y, Chen C, Wu J, et al. Sequence-Based Genomic Analysis Reveals Transmission of Antibiotic Resistance and Virulence among Carbapenemase-Producing Klebsiella pneumoniae Strains. mSphere. 2022;7(3):e0014322. doi:10.1128/msphere.00143-22
  • Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18. doi:10.1186/s12941-017-0191-3
  • Zarkotou O, Pournaras S, Tselioti P, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17(12):1798–1803. doi:10.1111/j.1469-0691.2011.03514.x
  • Tumbarello M, Trecarichi EM, De Rosa FG, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–2143. doi:10.1093/jac/dkv086
  • Rello J, Rodriguez A, Torres A, et al. Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia. Eur Respir J. 2006;27(6):1210–1216. doi:10.1183/09031936.06.00139305
  • Arancibia F, Bauer TT, Ewig S, et al. Community-acquired pneumonia due to gram-negative bacteria and pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med. 2002;162(16):1849–1858. doi:10.1001/archinte.162.16.1849
  • Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):3. doi:10.1128/CMR.00001-19
  • Tang M, Kong X, Hao J, Liu J. Epidemiological Characteristics and Formation Mechanisms of Multidrug-Resistant Hypervirulent. Front Microbiol. 2020;11:581543. doi:10.3389/fmicb.2020.581543
  • Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37–46. doi:10.1016/S1473-3099(17)30489-9
  • Xiao G, Cai Z, Guo Q, et al. Insights into the Unique Lung Microbiota Profile of Pulmonary Tuberculosis Patients Using Metagenomic Next-Generation Sequencing. Microbiol Spectr. 2022;10(1):e0190121. doi:10.1128/spectrum.01901-21
  • Ding L, Liu Y, Wu X, et al. Pathogen Metagenomics Reveals Distinct Lung Microbiota Signatures Between Bacteriologically Confirmed and Negative Tuberculosis Patients. Front Cell Infect Microbiol. 2021;11:708827. doi:10.3389/fcimb.2021.708827
  • Kateete DP, Mbabazi MM, Nakazzi F, et al. Sputum microbiota profiles of treatment-naïve TB patients in Uganda before and during first-line therapy. Sci Rep. 2021;11(1):24486. doi:10.1038/s41598-021-04271-y
  • Murray AK, Zhang L, Yin X, et al. Novel Insights into Selection for Antibiotic Resistance in Complex Microbial Communities. mBio. 2018;9(4):4. doi:10.1128/mBio.00969-18
  • Chen X, He G, Lin S, et al. Analysis of Serial Multidrug-Resistant Tuberculosis Strains Causing Treatment Failure and Within-Host Evolution by Whole-Genome Sequencing. mSphere. 2020;5(6):6. doi:10.1128/mSphere.00884-20
  • Carlos CC, Masim MAL, Lagrada ML, et al. Genome Sequencing Identifies Previously Unrecognized Klebsiella pneumoniae Outbreaks in Neonatal Intensive Care Units in the Philippines. Clin Infect Dis. 2021;73(Suppl_4):S316–S324. doi:10.1093/cid/ciab776
  • Onori R, Gaiarsa S, Comandatore F, et al. Tracking Nosocomial Klebsiella pneumoniae Infections and Outbreaks by Whole-Genome Analysis: small-Scale Italian Scenario within a Single Hospital. J Clin Microbiol. 2015;53(9):2861–2868. doi:10.1128/JCM.00545-15
  • Chen C, Zhang Y, Yu S-L, et al. Tracking Carbapenem-Producing Outbreak in an Intensive Care Unit by Whole Genome Sequencing. Front Cell Infect Microbiol. 2019;9:281. doi:10.3389/fcimb.2019.00281