101
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

In vitro Activity of Ceftaroline Against Isolates of Gram-Positive Bacteria from Patients with Bloodstream Infections Collected as a Part of ATLAS Between 2017 and 2020

, , & ORCID Icon
Pages 343-354 | Received 04 Aug 2023, Accepted 18 Jan 2024, Published online: 31 Jan 2024

References

  • Dunbar SA, Gardner C, Das S. Diagnosis and management of bloodstream infections with rapid, multiplexed molecular assays. Front Cell Infect Microbiol. 2022;12:859935. doi:10.3389/fcimb.2022.859935
  • Zhu Q, Yue Y, Zhu L, et al. Epidemiology and microbiology of gram-positive bloodstream infections in a tertiary-care hospital in Beijing, China: a 6-year retrospective study. Antimicrob Resist Infect Control. 2018;7(1):107. doi:10.1186/s13756-018-0398-x
  • Timsit JF, Ruppe E, Barbier F, Tabah A, Bassetti M. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med. 2020;46(2):266–284. doi:10.1007/s00134-020-05950-6
  • Duan X, Zhang R, Zhang X, Ding X, Sun T. Identification of prognostic factors in patients with streptococcus bloodstream infection. Front Med Lausanne. 2022;9:832007. doi:10.3389/fmed.2022.832007
  • Diekema DJ, Hsueh PR, Mendes RE, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimi Agen Chem. 2019; 63(7):1.
  • Cassini A, Hogberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi:10.1016/S1473-3099(18)30605-4
  • Giannella M, Bartoletti M, Gatti M, Viale P. Advances in the therapy of bacterial bloodstream infections. Clin Microbiol Infect. 2020;26(2):158–167. doi:10.1016/j.cmi.2019.11.001
  • Doernberg SB, Lodise TP, Thaden JT, et al. Gram-positive bacterial infections: research priorities, accomplishments, and future directions of the antibacterial resistance leadership group. Clin Infect Dis. 2017;64(suppl_1):S24–S29. doi:10.1093/cid/ciw828
  • Quinn NJ, Sebaaly JC, Patel BA, Weinrib DA, Anderson WE, Roshdy DG. Effectiveness of oral antibiotics for definitive therapy of non-staphylococcal gram-positive bacterial bloodstream infections. Ther Adv Infect Dis. 2019;6:2049936119863013. doi:10.1177/2049936119863013
  • Shirley DA, Heil EL, Johnson JK. Ceftaroline fosamil: a brief clinical review. Infect Dis Ther. 2013;2(2):95–110. doi:10.1007/s40121-013-0010-x
  • TEFLARO® (ceftaroline fosamil) for injection, for intravenous use. 2022. Available from: https://www.rxabbvie.com/pdf/teflaro_pi.pdf. Accessed 22, December 2022.
  • Pfizer. Zinforo 600 mg powder for concentrate for solution for infusion: summary of product characteristics. 2022. Available from: https://www.ema.europa.eu/en/documents/product-information/zinforo-epar-product-information_en.pdf. Accessed 22, December, 2022.
  • Sakoulas G, Moise PA, Casapao AM, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014;36(10):1317–1333. doi:10.1016/j.clinthera.2014.05.061
  • Tattevin P, Boutoille D, Vitrat V, et al. Salvage treatment of methicillin-resistant staphylococcal endocarditis with ceftaroline: a multicentre observational study. J Antimicrob Chemother. 2014;69(7):2010–2013. doi:10.1093/jac/dku085
  • Casapao AM, Davis SL, Barr VO, et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimi Agen Chem. 2014;58(5):2541–2546. doi:10.1128/AAC.02371-13
  • Sader HS, Carvalhaes CG, Mendes RE. Ceftaroline activity against Staphylococcus aureus isolated from patients with infective endocarditis, worldwide (2010–2019). Int J Infect Dis. 2021;102:524–528. doi:10.1016/j.ijid.2020.11.130
  • Sader HS, Farrell DJ, Flamm RK, Streit JM, Mendes RE, Jones RN. Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative Staphylococcus causing infection in US hospitals. Diagn Microbiol Infect Dis. 2016;85(1):80–84. doi:10.1016/j.diagmicrobio.2016.01.010
  • Antimicrobial Testing Leadership and Surveillance (ATLAS). 2022. Available from: https://atlas-surveillance.com/. December 18, 2022.
  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute; 2022.
  • EUCAST. Breakpoint tables for interpretation of MICs and zone diameters; 2023.
  • Pfizer. Tygacil. Package insert. 2022. Available from: https://www.pfizer.com/products/product-detail/tygacil. Accessed December 21, 2022.
  • EUCAST. Ceftaroline S. aureus breakpoints revised: addendum (July 2017) to EUCAST breakpoint tables v. 7.1. 2023. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Addenda/Addendum_2017-07-14.pdf. Accessed 12, October 2023.
  • Zhang Z, Chen M, Yu Y, Liu B, Liu Y. In vitro activity of ceftaroline And comparators against staphylococcus aureus isolates: results from 6 years of the atlas program (2012 To 2017). Infect Drug Resist. 2019;12:3349–3358. doi:10.2147/IDR.S226649
  • Sader HS, Flamm RK, Streit JM, Carvalhaes CG, Mendes RE. Antimicrobial activity of ceftaroline and comparator agents tested against organisms isolated from patients with community-acquired bacterial pneumonia in Europe, Asia, and Latin America. Int J Infect Dis. 2018;77:82–86. doi:10.1016/j.ijid.2018.10.004
  • Bae IG, Stone GG. Activity of ceftaroline against pathogens associated with community-acquired pneumonia collected as part of the AWARE surveillance program, 2015–2016. Diagn Microbiol Infect Dis. 2019;95(3):114843. doi:10.1016/j.diagmicrobio.2019.05.015
  • Pierard D, Stone GG. In vitro activity of ceftaroline and comparators against bacterial isolates collected globally from patients with skin infections. J Glob Antimicrob Resist. 2021;26:4–10. doi:10.1016/j.jgar.2021.04.020