235
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparative Study on Tuberculosis Drug Resistance and Molecular Detection Methods Among Different Mycobacterium Tuberculosis Lineages

, , , , , , & show all
Pages 5941-5951 | Received 30 May 2023, Accepted 24 Aug 2023, Published online: 07 Sep 2023

References

  • Bagcchi S. WHO’s global tuberculosis report 2022. Lancet Microbe. 2023;4(1):e20. doi:10.1016/S2666-5247(22)00359-7
  • He X, Cao M, Mahapatra T, et al. Burden of tuberculosis in Xinjiang between 2011 and 2015: a surveillance data-based study. PLoS One. 2017;12(11):e0187592. doi:10.1371/journal.pone.0187592
  • Sanoussi CN, Affolabi D, Rigouts L, et al. Genotypic characterization directly applied to sputum improves the detection of Mycobacterium africanum West African 1, under-represented in positive cultures. PLoS Negl Trop Dis. 2017;11:e0005900. doi:10.1371/journal.pntd.0005900
  • Menardo F, Rutaihwa LK, Zwyer M, et al. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim. F1000 Res. 2021;10:60. doi:10.12688/f1000research.28318.2
  • Reed MB, Pichler VK, Mcintosh F, et al. Major mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol. 2009;47:1119–1128. doi:10.1128/JCM.02142-08
  • Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2012;367:850–859. doi:10.1098/rstb.2011.0316
  • Oppong YEA, Phelan J, Perdigão J, et al. Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance. BMC Genomics. 2019;20(1):252. doi:10.1186/s12864-019-5615-3
  • Xu AM, He CJ, Cheng X, et al. Distribution and identification of Mycobacterium tuberculosis lineage in Kashgar prefecture. BMC Infect Dis. 2022;22(1):312. doi:10.1186/s12879-022-07307-4
  • Svadzian A, Sulis G, Gore G, et al. Differential yield of universal versus selective drug susceptibility testing of patients with tuberculosis in high-burden countries: a systematic review and meta-analysis. BMJ Glob Health. 2020;5(10):e003438. doi:10.1136/bmjgh-2020-003438
  • Sanchez-Padilla E, Merker M, Beckert P, et al. Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med. 2015;372(12):1181–1182. doi:10.1056/NEJMc1413930
  • Allix-Béguec C, Arandjelovic I, Bi L, et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med. 2018;379(15):1403–1415.
  • Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–2170. doi:10.1056/NEJMoa1108789
  • Rigouts L, Miotto P, Schats M, et al. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations. Sci Rep. 2019;9(1):11760. doi:10.1038/s41598-019-48289-9
  • Dicks KV, Stout JE. Molecular diagnostics for mycobacterium tuberculosis infection. Annu Rev Med. 2019;70:77–90. doi:10.1146/annurev-med-040717-051502
  • Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2019;6(6):CD009593. doi:10.1002/14651858.CD009593.pub4
  • Chen R, Li MC, Zhao LL, et al. Analysis on drug sensitivity spectrum of 167 multidrug-resistant Mycobacterium tuberculosis in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(5):764–769. Chinese. doi:10.3760/cma.j.cn112338-20191121-00823
  • Anthwal D, Gupta RK, Bhalla M, et al. Direct detection of rifampin and isoniazid resistance in sputum samples from tuberculosis patients by high-resolution melt curve analysis. J Clin Microbiol. 2017;55(6):1755–1766. doi:10.1128/JCM.02104-16
  • Pakbin B, Basti AA, Khanjari A, et al. Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples. Sci Rep. 2022;12(1):473. doi:10.1038/s41598-021-04484-1
  • Chao YQ, Zhang SX, J LI, et al. Drug resistance characteristics and transmission mechanism of Mycobacterium tuberculosis in Kashgar. Bull Dis Con Prev. 2022;37(05):5–7+11.
  • Mohamed S, Koser CU, Salfinger M, et al. Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics? Eur Respir J. 2021;57(3):2004077. doi:10.1183/13993003.04077-2020
  • Niemann S, Supply P. Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med. 2014;4(12):a021188. doi:10.1101/cshperspect.a021188
  • Satta G, Lipman M, Smith GP, et al. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect. 2018;24(6):604–609. doi:10.1016/j.cmi.2017.10.030
  • Liu D, Huang F, Zhang G. et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect. 2022;28731.e9–e15. doi:10.1016/j.cmi.2021.09.014
  • Phelan JE, O’Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019;11(1):41. doi:10.1186/s13073-019-0650-x
  • Kohl TA, Utpatel C, Schleusener V, et al. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ. 2018;6:e5895. doi:10.7717/peerj.5895
  • Walker TM, Miotto P, Koser CU, et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe. 2022;3(4):e265–e273. doi:10.1016/S2666-5247(21)00301-3
  • Shanmugam SK, Kumar N, Sembulingam T, et al. Mycobacterium tuberculosis lineages associated with mutations and drug resistance in isolates from India. Microbiol Spectr. 2022;10(3):e0159421. doi:10.1128/spectrum.01594-21
  • Hoffner S, Sahebi L, Ansarin K, et al. Mycobacterium tuberculosis of the Beijing genotype in Iran and the world health organization eastern Mediterranean region: a meta-analysis. Microb Drug Resist. 2018;24(6):693–698. doi:10.1089/mdr.2017.0160
  • Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45(7):784–790. doi:10.1038/ng.2656
  • Arefzadeh S, Azimi T, Nasiri MJ, et al. High-resolution melt curve analysis for rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a single-centre study in Iran. New Microbes New Infect. 2020;35:100665. doi:10.1016/j.nmni.2020.100665
  • Parsa S, Yaghoubi A, Izadi N, et al. Detection of isoniazid and rifampin resistance in mycobacterium tuberculosis clinical isolates from sputum samples by high-resolution melting analysis. Curr Microbiol. 2022;79(9):257. doi:10.1007/s00284-022-02960-z
  • Sun WN, Zhang JX, Zhang XS, et al. Efficacy comparison of two molecular drug sensitivity methods and phenotypic drug sensitivity testindetecting drug resistance of Mycobacterium tuberculosis. Chin J Antitubercul. 2022;44(10):1016–1021.
  • Seifert M, Catanzaro D, Catanzaro A, et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One. 2015;10(3):e0119628. doi:10.1371/journal.pone.0119628
  • Charan AS, Gupta N, Dixit R, et al. Pattern of InhA and KatG mutations in isoniazid monoresistant Mycobacterium tuberculosis isolates. Lung India. 2020;37(3):227–231. doi:10.4103/lungindia.lungindia_204_19
  • Jagielski T, Ignatowska H, Bakula Z, et al. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS One. 2014;9(6):e100078. doi:10.1371/journal.pone.0100078