217
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Analysis of Drug-Resistance Characteristics and Genetic Diversity of Multidrug-Resistant Tuberculosis Based on Whole-Genome Sequencing on the Hainan Island, China

, , , , , , & ORCID Icon show all
Pages 5783-5798 | Received 22 Jun 2023, Accepted 22 Aug 2023, Published online: 04 Sep 2023

References

  • Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, et al. Genetic diversity of drug-resistant Mycobacterium tuberculosis clinical isolates from Khuzestan province, Iran. AMB Express. 2022;12(1):85. doi:10.1186/s13568-022-01425-7
  • Dohal M, Dvořáková V, Šperková M, et al. Whole genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates collected in the Czech Republic, 2005–2020. Sci Rep. 2022;12(1):7149. doi:10.1038/s41598-022-11287-5
  • Lin M, Zhong Y, Chen Z, et al. High incidence of drug-resistant Mycobacterium tuberculosis in Hainan Island, China. Trop Med Int Health. 2019;24(9):1098–1103. doi:10.1111/tmi.13285
  • World Health Organisation. Global tuberculosis report 2022; 2022. Available from: http://www.who.int/tb/publications/global_report/en/. Accessed August 25, 2023.
  • Gandhi NR, Nunn P, Dheda K, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 2010;375(9728):1830–1843. doi:10.1016/S0140-6736(10)60410-2
  • He W, Tan Y, Liu C, et al. Drug-resistant characteristics, genetic diversity, and transmission dynamics of rifampicin-resistant Mycobacterium tuberculosis in Hunan, China, Revealed by Whole-Genome Sequencing. Microbiol Spectr. 2022;10(1):e0154321. doi:10.1128/spectrum.01543-21
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–544. doi:10.1038/31159
  • Vaziri F, Kohl TA, Ghajavand H, et al. Genetic diversity of multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in the capital of Iran, revealed by whole-genome sequencing. J Clin Microbiol. 2019;57(1). doi:10.1128/JCM.01477-18
  • Rendon-Bautista LA, Álvarez-maya I, Sandoval-Díaz M, et al. Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis. 2021;129:102106. doi:10.1016/j.tube.2021.102106
  • Satta G, Atzeni A, McHugh TD. Mycobacterium tuberculosis and whole genome sequencing: a practical guide and online tools available for the clinical microbiologist. Clin Microbiol Infect. 2017;23(2):69–72. doi:10.1016/j.cmi.2016.09.005
  • Faksri K, Tan JH, Chaiprasert A, et al. Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis. Infect Genet Evol. 2016;45:359–368. doi:10.1016/j.meegid.2016.09.013
  • Nikolayevskyy V, Kranzer K, Niemann S, et al. Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: a systematic review. Tuberculosis. 2016;98:77–85. doi:10.1016/j.tube.2016.02.009
  • Liu L, Zhao X, Wu X, et al. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hainan, China: from 2014 to 2019. BMC Microbiol. 2021;21(1):185. doi:10.1186/s12866-021-02246-7
  • Wang J, Chen Z, Xu Y, et al. Screening and drug resistance analysis of non-tuberculous mycobacteria in patients with suspected pulmonary tuberculosis on the Hainan Island, China. Infect Drug Resist. 2023;16:463–476. doi:10.2147/IDR.S396050
  • Du J, Wang C, Zhang G, et al. Epidemiological sampling survey of tuberculosis in Hainan province in 2010. Chin Trop Med. 2012;12:1323–1326.
  • Wang L, Zhang H, Raun Y, et al. Tuberculosis prevalence in China, 1990–2010; a longitudinal analysis of national survey data. Lancet. 2014;383(9934):2057–2064. doi:10.1016/S0140-6736(13)62639-2
  • Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs WR. Genetic manipulation of Mycobacterium tuberculosis. Curr Protoc Microbiol. 2007;6(1):10A–12A. doi:10.1002/9780471729259.mc10a02s6
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi:10.1093/bioinformatics/btp324
  • Zhou Z, Alikhan N-F, Sergeant MJ, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28(9):1395–1404. doi:10.1101/gr.232397.117
  • Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis. 2017;17(3):275–284. doi:10.1016/S1473-3099(16)30418-2
  • Phelan JE, O’Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019;11(1):41. doi:10.1186/s13073-019-0650-x
  • Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7(1):51. doi:10.1186/s13073-015-0164-0
  • Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi:10.1093/molbev/msab120
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–W296. doi:10.1093/nar/gkab301
  • Walker TM, Monk P, Grace Smith E, et al. Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing. Clin Microbiol Infect. 2013;19(9):796–802. doi:10.1111/1469-0691.12183
  • Tagliani E, Anthony R, Kohl TA, et al. Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: an ECDC pilot study. Eur Respir J. 2021;57(1):2002272. doi:10.1183/13993003.02272-2020
  • Zhao B, Liu C, Fan J, et al. Transmission and drug resistance genotype of multidrug-resistant or rifampicin-resistant Mycobacterium tuberculosis in Chongqing, China. Microbiol Spectr. 2022;10(5):e0240521. doi:10.1128/spectrum.02405-21
  • Sun W, Gui X, Wu Z, et al. Prediction of drug resistance profile of multidrug-resistant Mycobacterium tuberculosis (MDR-MTB) isolates from newly diagnosed case by whole genome sequencing (WGS): a study from a high tuberculosis burden country. BMC Infect Dis. 2022;22(1):499. doi:10.1186/s12879-022-07482-4
  • Lin S, Wei S, Zhao Y, et al. Genetic diversity and drug susceptibility profiles of multidrug-resistant tuberculosis strains in Southeast China. Infect Drug Resist. 2021;14:3979–3989. doi:10.2147/IDR.S331516
  • Tania T, Sudarmono P, Kusumawati RL, et al. Whole-genome sequencing analysis of multidrug-resistant Mycobacterium tuberculosis from Java, Indonesia. J Med Microbiol. 2020;69(7):1013–1019. doi:10.1099/jmm.0.001221
  • Holt KE, McAdam P, Thai PVK, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet. 2018;50(6):849–856. doi:10.1038/s41588-018-0117-9
  • Liang D, Song Z, Liang X, et al. Whole genomic analysis revealed high genetic diversity and drug-resistant characteristics of Mycobacterium tuberculosis in Guangxi, China. Infect Drug Resist. 2023;16:5021–5031. doi:10.2147/IDR.S410828
  • Chee C, Lim LKY, Ong RTH, et al. Whole genome sequencing analysis of multidrug-resistant tuberculosis in Singapore, 2006–2018. Eur J Clin Microbiol Infect Dis. 2021;40(5):1079–1083. doi:10.1007/s10096-020-04100-6
  • Nonghanphithak D, Chaiprasert A, Smithtikarn S, et al. Clusters of drug-resistant Mycobacterium tuberculosis detected by whole-genome sequence analysis of nationwide sample, Thailand, 2014–2017. Emerg Infect Dis. 2021;27(3):813–822. doi:10.3201/eid2703.204364
  • Guerra-Assuncao JA, Crampin AC, Houben R, et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife. 2015;4. doi:10.7554/eLife.05166
  • Yang C, Shen X, Peng Y, et al. Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis. 2015;61(2):219–227. doi:10.1093/cid/civ255
  • Jaksuwan R, Tharavichikul P, Patumanond J, et al. Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand. Infect Drug Resist. 2017;10:167–174. doi:10.2147/IDR.S130203
  • Marttila HJ, Soini H, Eerola E, et al. A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg Area in Russia. Antimicrob Agents Chemother. 1998;42(9):2443–2445. doi:10.1128/AAC.42.9.2443
  • Jian J, Yang X, Yang J, et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist. 2018;11:1627–1634. doi:10.2147/IDR.S176609
  • Yuan X, Zhang T, Kawakami K, et al. Molecular characterization of multidrug- and extensively drug-resistant Mycobacterium tuberculosis strains in Jiangxi, China. J Clin Microbiol. 2012;50(7):2404–2413. doi:10.1128/JCM.06860-11
  • Sandoval R, Monteghirfo M, Salazar O, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [Cross-resistance between isoniazid and ethionamide and its strong association with mutation C-15T in Mycobacterium tuberculosis isolates from Peru]. Rev Argent Microbiol. 2020;52(1):36–42. Spanish. doi:10.1016/j.ram.2019.03.005
  • Vilcheze C, Jacobs WJ, Hatfull GF, Jacobs WR. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr. 2014;2(4). doi:10.1128/microbiolspec.MGM2-0014-2013
  • Bollela VR, Namburete EI, Feliciano CS, et al. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2016;20(8):1099–1104. doi:10.5588/ijtld.15.0864
  • Wu X, Tan G, Sha W, et al. Use of whole-genome sequencing to predict Mycobacterium tuberculosis complex drug resistance from early positive liquid cultures. Microbiol Spectr. 2022;10(2):e0251621. doi:10.1128/spectrum.02516-21
  • Wu X, Gao R, Shen X, et al. Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Shanghai, China. Int J Infect Dis. 2020;96:48–53. doi:10.1016/j.ijid.2020.04.039
  • Shea J, Halse TA, Lapierre P, et al. Comprehensive whole-genome sequencing and reporting of drug resistance profiles on clinical cases of Mycobacterium tuberculosis in New York State. J Clin Microbiol. 2017;55(6):1871–1882. doi:10.1128/JCM.00298-17
  • Van Deun A, Wright A, Zignol M, et al. Drug susceptibility testing proficiency in the network of supranational tuberculosis reference laboratories. Int J Tuberc Lung Dis. 2011;15(1):116–124.
  • Madison B, Robinson-Dunn B, George I, et al. Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J Clin Microbiol. 2002;40(11):3976–3979. doi:10.1128/JCM.40.11.3976-3979.2002
  • Malinga L, Brand J, Jansen van Rensburg C, et al. Investigation of isoniazid and ethionamide cross-resistance by whole genome sequencing and association with poor treatment outcomes of multidrug-resistant tuberculosis patients in South Africa. Int J Mycobacteriol. 2016;5(Suppl 1):S36–S37. doi:10.1016/j.ijmyco.2016.11.020
  • Morlock GP, Metchock B, Sikes D, et al. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2003;47(12):3799–3805. doi:10.1128/AAC.47.12.3799-3805.2003
  • Hicks ND, Carey AF, Yang J, et al. Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in Mycobacterium tuberculosis. mBio. 2019;10(2). doi:10.1128/mBio.00616-19
  • Colangeli R, Jedrey H, Kim S, et al. Bacterial factors that predict relapse after tuberculosis therapy. N Engl J Med. 2018;379(9):823–833. doi:10.1056/NEJMoa1715849