368
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Epidemic Trends and Biofilm Formation Mechanisms of Haemophilus influenzae: Insights into Clinical Implications and Prevention Strategies

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 5359-5373 | Received 05 Jun 2023, Accepted 10 Aug 2023, Published online: 16 Aug 2023

References

  • Butler DF, Myers AL. Changing epidemiology of Haemophilus influenzae in children. Infect Dis Clin North Am. 2018;32(1):119–128. doi:10.1016/j.idc.2017.10.005
  • Soeters HM, Blain A, Pondo T, et al. Current epidemiology and trends in invasive Haemophilus influenzae disease-United States, 2009–2015. Clin Infect Dis. 2018;67(6):881–889. doi:10.1093/cid/ciy187
  • Wahl B, O’Brien KL, Greenbaum A, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Health. 2018;6(7):e744–e757. doi:10.1016/S2214-109X(18)30247-X
  • Sakata H, Adachi Y, Morozumi M, Ubukata K. Invasive Haemophilus influenzae infections in children in Kamikawa subprefecture, Hokkaido, Japan, 2006–2015: the effectiveness of H. influenzae type b vaccine. J Infect Chemother. 2017;23(7):459–462. doi:10.1016/j.jiac.2017.03.019
  • Yang Y, Yang Y, Scherpbier RW, et al. Coverage of Haemophilus influenzae type b conjugate vaccine for children in Mainland China: systematic review and meta-analysis. Pediatr Infect Dis J. 2019;38(3):248–252. doi:10.1097/INF.0000000000002132
  • Shrestha RG, Tandukar S, Ansari S, et al. Bacterial meningitis in children under 15 years of age in Nepal. BMC Pediatr. 2015;15:94. doi:10.1186/s12887-015-0416-6
  • Yoshida LM, Nguyen HA, Watanabe K, et al. Incidence of radiologically-confirmed pneumonia and Haemophilus influenzae type b carriage before Haemophilus influenzae type b conjugate vaccine introduction in Central Vietnam. J Pediatr. 2013;163(1 Suppl):S38–S43. doi:10.1016/j.jpeds.2013.03.029
  • Tsang RSW, Ulanova M. The changing epidemiology of invasive Haemophilus influenzae disease: emergence and global presence of serotype a strains that may require a new vaccine for control. Vaccine. 2017;35(33):4270–4275. doi:10.1016/j.vaccine.2017.06.001
  • Soeters HM, Oliver SE, Plumb ID, et al. Epidemiology of invasive Haemophilus influenzae serotype a disease-United States, 2008–2017. Clin Infect Dis. 2021;73(2):e371–e379. doi:10.1093/cid/ciaa875
  • McTaggart LR, Cronin K, Seo CY, Wilson S, Patel SN, Kus JV. Increased incidence of invasive Haemophilus influenzae disease driven by non-type B isolates in Ontario, Canada, 2014 to 2018. Microbiol Spectr. 2021;9(2):e0080321. doi:10.1128/Spectrum.00803-21
  • Heliodoro CIM, Bettencourt CR, Bajanca-Lavado MP; Portuguese Group for the Study of Haemophilus influenzae invasive i. Molecular epidemiology of invasive Haemophilus influenzae disease in Portugal: an update of the post-vaccine period, 2011–2018. Eur J Clin Microbiol Infect Dis. 2020;39(8):1471–1480. doi:10.1007/s10096-020-03865-0
  • Bajanca-Lavado MP, Cavaco L, Fernandes M, et al. Haemophilus influenzae carriage among healthy children in Portugal, 2015–2019. Microorganisms. 2022;10. doi:10.3390/microorganisms10101964
  • Li XX, Xiao SZ, Gu FF, He WP, Ni YX, Han LZ. Molecular epidemiology and antimicrobial resistance of Haemophilus influenzae in adult patients in Shanghai, China. Front Public Health. 2020;8:95. doi:10.3389/fpubh.2020.00095
  • Fan X, Liu X, Ji L, et al. Epidemiological analysis and rapid detection by one-step multiplex PCR assay of Haemophilus influenzae in children with respiratory tract infections in Zhejiang Province, China. BMC Infect Dis. 2018;18(1):414. doi:10.1186/s12879-018-3295-2
  • Oliver SE, Rubis AB, Soeters HM, et al. Epidemiology of invasive nontypeable Haemophilus influenzae disease-United States, 2008–2019. Clin Infect Dis. 2023;76(11):1889–1895. doi:10.1093/cid/ciad054
  • Ekinci E, Willen L, Rodriguez Ruiz JP, et al. Haemophilus influenzae carriage and antibiotic resistance profile in Belgian infants over a three-year period (2016–2018). Front Microbiol. 2023;14:1160073. doi:10.3389/fmicb.2023.1160073
  • Hachisu Y, Tamura K, Murakami K, et al. Invasive Haemophilus influenzae disease among adults in Japan during 2014–2018. Infection. 2023;51(2):355–364. doi:10.1007/s15010-022-01885-w
  • Bakaletz LO, Novotny LA. Nontypeable Haemophilus influenzae (NTHi). Trends Microbiol. 2018;26(8):727–728. doi:10.1016/j.tim.2018.05.001
  • Cerquetti M, Cardines R, Giufre M, et al. Genetic diversity of invasive strains of Haemophilus influenzae type b before and after introduction of the conjugate vaccine in Italy. Clin Infect Dis. 2006;43(3):317–319. doi:10.1086/505499
  • Lam TT, Elias J, Frosch M, Vogel U, Claus H. New diagnostic PCR for Haemophilus influenzae serotype e based on the cap locus of strain ATCC 8142. Int J Med Microbiol. 2011;301(2):176–179. doi:10.1016/j.ijmm.2010.07.004
  • Davis GS, Sandstedt SA, Patel M, Marrs CF, Gilsdorf JR. Use of bexB to detect the capsule locus in Haemophilus influenzae. J Clin Microbiol. 2011;49(7):2594–2601. doi:10.1128/JCM.02509-10
  • Revez J, Espinosa L, Albiger B, et al. Survey on the use of whole-genome sequencing for infectious diseases surveillance: rapid expansion of european national capacities, 2015–2016. Front Public Health. 2017;5:347. doi:10.3389/fpubh.2017.00347
  • Potts CC, Topaz N, Rodriguez-Rivera LD, et al. Genomic characterization of Haemophilus influenzae: a focus on the capsule locus. BMC Genomics. 2019;20(1):733. doi:10.1186/s12864-019-6145-8
  • Watts SC, Holt KE. hicap: in silico serotyping of the Haemophilus influenzae capsule locus. J Clin Microbiol. 2019;57(6). doi:10.1128/jcm.00190-19
  • Slotved HC, Johannesen TB, Stegger M, Fuursted K. Evaluation of molecular typing for national surveillance of invasive clinical Haemophilus influenzae isolates from Denmark. Front Microbiol. 2022;13:1030242. doi:10.3389/fmicb.2022.1030242
  • Takeuchi N, Segawa S, Ishiwada N, et al. Capsular serotyping of Haemophilus influenzae by using matrix-associated laser desorption ionization-time of flight mass spectrometry. J Infect Chemother. 2018;24(7):510–514. doi:10.1016/j.jiac.2018.02.007
  • Klibanov OM, Kehr H, Jeter Z, Ekwonu T. Fatal meningitis and sepsis caused by nontypeable Haemophilus influenzae. J Med Cases. 2022;13(8):396–401. doi:10.14740/jmc3974
  • Meats E, Feil EJ, Stringer S, et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol. 2003;41(4):1623–1636. doi:10.1128/JCM.41.4.1623-1636.2003
  • Wen S, Mai Y, Chen X, et al. Molecular epidemiology and antibiotic resistance analysis of Non-Typeable Haemophilus influenzae (NTHi) in Guangzhou: a representative city of Southern China. Antibiotics. 2023;12(4):656.
  • Dong Q, Shi W, Cheng X, et al. Widespread of non-typeable Haemophilus influenzae with high genetic diversity after two decades use of Hib vaccine in China. J Clin Lab Anal. 2020;34(4):e23145. doi:10.1002/jcla.23145
  • Riesbeck K. Complement evasion by the human respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis. FEBS Lett. 2020;594(16):2586–2597. doi:10.1002/1873-3468.13758
  • Noel GJ, Brittingham A, Granato AA, Mosser DM. Effect of amplification of the Cap b locus on complement-mediated bacteriolysis and opsonization of type b Haemophilus influenzae. Infect Immun. 1996;64(11):4769–4775. doi:10.1128/iai.64.11.4769-4775.1996
  • Hauser S, Wegele C, Stump-Guthier C, et al. Capsule and fimbriae modulate the invasion of Haemophilus influenzae in a human blood-cerebrospinal fluid barrier model. Int J Med Microbiol. 2018;308(7):829–839. doi:10.1016/j.ijmm.2018.07.004
  • Jurcisek JA, Bookwalter JE, Baker BD, et al. The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol Microbiol. 2007;65(5):1288–1299. doi:10.1111/j.1365-2958.2007.05864.x
  • Novotny LA, Bakaletz LO. Intercellular adhesion molecule 1 serves as a primary cognate receptor for the Type IV pilus of nontypeable Haemophilus influenzae. Cell Microbiol. 2016;18(8):1043–1055. doi:10.1111/cmi.12575
  • Carruthers MD, Tracy EN, Dickson AC, Ganser KB, Munson RS, Bakaletz LO. Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons. J Bacteriol. 2012;194(8):1927–1933. doi:10.1128/JB.06540-11
  • Mokrzan EM, Novotny LA, Brockman KL, Bakaletz LO. Antibodies against the Majority Subunit (PilA) of the type IV pilus of nontypeable Haemophilus influenzae disperse moraxella catarrhalis from a dual-species biofilm. mBio. 2018;9(6):e02423–18.
  • Wilkinson TMA, Schembri S, Brightling C, et al. Non-typeable Haemophilus influenzae protein vaccine in adults with COPD: a Phase 2 clinical trial. Vaccine. 2019;37(41):6102–6111. doi:10.1016/j.vaccine.2019.07.100
  • Buscher AZ, Burmeister K, Barenkamp SJ, St Geme JW. Evolutionary and functional relationships among the nontypeable Haemophilus influenzae HMW family of adhesins. J Bacteriol. 2004;186(13):4209–4217. doi:10.1128/JB.186.13.4209-4217.2004
  • Rempe KA, Porsch EA, Wilson JM, St Geme JW. The HMW1 and HMW2 adhesins enhance the ability of nontypeable Haemophilus influenzae to colonize the upper respiratory tract of rhesus macaques. Infect Immun. 2016;84(10):2771–2778. doi:10.1128/IAI.00153-16
  • Kadry NA, Porsch EA, Shen H, St Geme JW. Immunization with HMW1 and HMW2 adhesins protects against colonization by heterologous strains of nontypeable Haemophilus influenzae. Proc Natl Acad Sci U S A. 2021;118(32):e2019923118.
  • Atack JM, Winter LE, Jurcisek JA, Bakaletz LO, Barenkamp SJ, Jennings MP. Selection and counterselection of hia expression reveals a key role for phase-variable expression of hia in infection caused by nontypeable Haemophilus influenzae. J Infect Dis. 2015;212(4):645–653. doi:10.1093/infdis/jiv103
  • Atack JM, Day CJ, Poole J, et al. The nontypeable Haemophilus influenzae major adhesin hia is a dual-function lectin that binds to human-specific respiratory tract sialic acid glycan receptors. mBio. 2020;11(6):10–128.
  • Watson ME, Nelson KL, Nguyen V, et al. Adhesin genes and serum resistance in Haemophilus influenzae type f isolates. J Med Microbiol. 2013;62(Pt 4):514–524. doi:10.1099/jmm.0.052175-0
  • Singh B, Jubair TA, Morgelin M, et al. Haemophilus influenzae surface fibril (Hsf) is a unique twisted hairpin-like trimeric autotransporter. Int J Med Microbiol. 2015;305(1):27–37. doi:10.1016/j.ijmm.2014.10.004
  • Singh B, Su YC, Al-Jubair T, et al. A fine-tuned interaction between trimeric autotransporter haemophilus surface fibrils and vitronectin leads to serum resistance and adherence to respiratory epithelial cells. Infect Immun. 2014;82(6):2378–2389. doi:10.1128/IAI.01636-13
  • Spahich NA, St Geme JW. Structure and function of the Haemophilus influenzae autotransporters. Front Cell Infect Microbiol. 2011;1:5. doi:10.3389/fcimb.2011.00005
  • De Chiara M, Hood D, Muzzi A, et al. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc Natl Acad Sci U S A. 2014;111(14):5439–5444. doi:10.1073/pnas.1403353111
  • Euba B, Moleres J, Viadas C, et al. Relative contribution of P5 and Hap surface proteins to nontypable Haemophilus influenzae interplay with the host upper and lower airways. PLoS One. 2015;10(4):e0123154. doi:10.1371/journal.pone.0123154
  • Marti-Lliteras P, Lopez-Gomez A, Mauro S, et al. Nontypable Haemophilus influenzae displays a prevalent surface structure molecular pattern in clinical isolates. PLoS One. 2011;6(6):e21133. doi:10.1371/journal.pone.0021133
  • Rosadini CV, Ram S, Akerley BJ. Outer membrane protein P5 is required for resistance of nontypeable Haemophilus influenzae to both the classical and alternative complement pathways. Infect Immun. 2014;82(2):640–649. doi:10.1128/IAI.01224-13
  • Thofte O, Bettoni S, Su YC, et al. Nontypeable Haemophilus influenzae P5 binds human C4b-binding protein, promoting serum resistance. J Immunol. 2021;207(6):1566–1577. doi:10.4049/jimmunol.2100105
  • Murphy TF, Kirkham C, Jones MM, Sethi S, Kong Y, Pettigrew MM. Expression of IgA proteases by Haemophilus influenzae in the respiratory tract of adults with chronic obstructive pulmonary disease. J Infect Dis. 2015;212(11):1798–1805. doi:10.1093/infdis/jiv299
  • Resman F, Manat G, Lindh V, Murphy TF, Riesbeck K. Differential distribution of IgA-protease genotypes in mucosal and invasive isolates of Haemophilus influenzae in Sweden. BMC Infect Dis. 2018;18(1):592. doi:10.1186/s12879-018-3464-3
  • Vitovski S, Dunkin KT, Howard AJ, Sayers JR. Nontypeable Haemophilus influenzae in carriage and disease: a difference in IgA1 protease activity levels. JAMA. 2002;287(13):1699–1705. doi:10.1001/jama.287.13.1699
  • Shehaj L, Choudary SK, Makwana KM, Gallo MC, Murphy TF, Kritzer JA. Small-molecule inhibitors of Haemophilus influenzae IgA1 protease. ACS Infect Dis. 2019;5(7):1129–1138. doi:10.1021/acsinfecdis.9b00004
  • Kress-Bennett JM, Hiller NL, Eutsey RA, et al. Identification and characterization of msf, a novel virulence factor in Haemophilus influenzae. PLoS One. 2016;11(3):e0149891. doi:10.1371/journal.pone.0149891
  • Unal CM, Singh B, Fleury C, et al. QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism. Int J Med Microbiol. 2012;302(6):261–269. doi:10.1016/j.ijmm.2012.07.013
  • Vogel AR, Szelestey BR, Raffel FK, et al. SapF-mediated heme-iron utilization enhances persistence and coordinates biofilm architecture of Haemophilus. Front Cell Infect Microbiol. 2012;2:42. doi:10.3389/fcimb.2012.00042
  • Boisvert AA, Cheng MP, Sheppard DC, Nguyen D. Microbial biofilms in pulmonary and critical care diseases. Ann Am Thorac Soc. 2016;13(9):1615–1623. doi:10.1513/AnnalsATS.201603-194FR
  • Sun F, Qu F, Ling Y, et al. Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol. 2013;8(7):877–886. doi:10.2217/fmb.13.58
  • Mizrahi A, Cohen R, Varon E, et al. Non typable-Haemophilus influenzae biofilm formation and acute otitis media. BMC Infect Dis. 2014;14:400. doi:10.1186/1471-2334-14-400
  • Cardines R, Giufre M, Pompilio A, et al. Haemophilus influenzae in children with cystic fibrosis: antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int J Med Microbiol. 2012;302(1):45–52. doi:10.1016/j.ijmm.2011.08.003
  • Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011;15(4):305–311.
  • Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36(5):347–355. doi:10.1557/mrs.2011.65
  • Tchoupa AK, Lichtenegger S, Reidl J, Hauck CR. Outer membrane protein P1 is the CEACAM-binding adhesin of Haemophilus influenzae. Mol Microbiol. 2015;98(3):440–455. doi:10.1111/mmi.13134
  • Weeks JR, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. the role of non-typeable Haemophilus influenzae biofilms in chronic obstructive pulmonary disease. Front Cell Infect Microbiol. 2021;11:720742. doi:10.3389/fcimb.2021.720742
  • Mokrzan EM, Ward MO, Bakaletz LO. Type IV pilus expression is upregulated in nontypeable Haemophilus influenzae biofilms formed at the temperature of the human nasopharynx. J Bacteriol. 2016;198(19):2619–2630. doi:10.1128/JB.01022-15
  • Hong W, Pang B, West-Barnette S, Swords WE. Phosphorylcholine expression by nontypeable Haemophilus influenzae correlates with maturation of biofilm communities in vitro and in vivo. J Bacteriol. 2007;189(22):8300–8307. doi:10.1128/JB.00532-07
  • Swords WE, Moore ML, Godzicki L, Bukofzer G, Mitten MJ, VonCannon J. Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infect Immun. 2004;72(1):106–113. doi:10.1128/IAI.72.1.106-113.2004
  • Puig C, Marti S, Hermans PW, et al. Incorporation of phosphorylcholine into the lipooligosaccharide of nontypeable Haemophilus influenzae does not correlate with the level of biofilm formation in vitro. Infect Immun. 2014;82(4):1591–1599. doi:10.1128/IAI.01445-13
  • Langereis JD, Hermans PW. Novel concepts in nontypeable Haemophilus influenzae biofilm formation. FEMS Microbiol Lett. 2013;346(2):81–89. doi:10.1111/1574-6968.12203
  • Armbruster CE, Pang B, Murrah K, et al. RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP. Mol Microbiol. 2011;82(4):836–850. doi:10.1111/j.1365-2958.2011.07831.x
  • Armbruster CE, Hong W, Pang B, et al. LuxS promotes biofilm maturation and persistence of nontypeable haemophilus influenzae in vivo via modulation of lipooligosaccharides on the bacterial surface. Infect Immun. 2009;77(9):4081–4091. doi:10.1128/IAI.00320-09
  • Hong W, Juneau RA, Pang B, Swords WE. Survival of bacterial biofilms within neutrophil extracellular traps promotes nontypeable Haemophilus influenzae persistence in the chinchilla model for otitis media. J Innate Immun. 2009;1(3):215–224. doi:10.1159/000205937
  • Pang B, Armbruster CE, Foster G, Learman BS, Gandhi U, Swords WE. Autoinducer 2 (AI-2) production by nontypeable Haemophilus influenzae 86-028NP promotes expression of a predicted glycosyltransferase that is a determinant of biofilm maturation, prevention of dispersal, and persistence in vivo. Infect Immun. 2018;86(12):10–128.
  • Souza JGS, Bertolini M, Thompson A, et al. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. ISME J. 2020;14(5):1207–1222. doi:10.1038/s41396-020-0608-4
  • Domenech M, Pedrero-Vega E, Prieto A, Garcia E. Evidence of the presence of nucleic acids and beta-glucan in the matrix of non-typeable Haemophilus influenzae in vitro biofilms. Sci Rep. 2016;6:36424. doi:10.1038/srep36424
  • Jones EA, McGillivary G, Bakaletz LO. Extracellular DNA within a nontypeable Haemophilus influenzae-induced biofilm binds human beta defensin-3 and reduces its antimicrobial activity. J Innate Immun. 2013;5(1):24–38. doi:10.1159/000339961
  • Cavaliere R, Ball JL, Turnbull L, Whitchurch CB. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin. Microbiologyopen. 2014;3(4):557–567. doi:10.1002/mbo3.187
  • Devaraj A, Buzzo J, Rocco CJ, Bakaletz LO, Goodman SD. The DNABII family of proteins is comprised of the only nucleoid associated proteins required for nontypeable Haemophilus influenzae biofilm structure. Microbiologyopen. 2018;7(3):e00563. doi:10.1002/mbo3.563
  • Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci U S A. 2017;114(32):E6632–E6641. doi:10.1073/pnas.1705508114
  • Jurcisek JA, Hofer LK, Goodman SD, Bakaletz LO. Monoclonal antibodies that target extracellular DNABII proteins or the type IV pilus of nontypeable Haemophilus influenzae (NTHI) worked additively to disrupt 2-genera biofilms. Biofilm. 2022;4:100096. doi:10.1016/j.bioflm.2022.100096
  • Slinger R, Chan F, Ferris W, et al. Multiple combination antibiotic susceptibility testing of nontypeable Haemophilus influenzae biofilms. Diagn Microbiol Infect Dis. 2006;56(3):247–253. doi:10.1016/j.diagmicrobio.2006.04.012
  • Wu S, Li X, Gunawardana M, et al. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism. PLoS One. 2014;9(7):e99204. doi:10.1371/journal.pone.0099204
  • Post DM, Held JM, Ketterer MR, et al. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol. 2014;14:329. doi:10.1186/s12866-014-0329-9
  • Cherkaoui A, Diene SM, Renzoni A, et al. Imipenem heteroresistance in nontypeable Haemophilus influenzae is linked to a combination of altered PBP3, slow drug influx and direct efflux regulation. Clin Microbiol Infect. 2017;23(2):118 e9–118 e19. doi:10.1016/j.cmi.2016.10.009
  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi:10.1038/nrmicro.2016.94
  • Puig C, Domenech A, Garmendia J, et al. Increased biofilm formation by nontypeable Haemophilus influenzae isolates from patients with invasive disease or otitis media versus strains recovered from cases of respiratory infections. Appl Environ Microbiol. 2014;80(22):7088–7095. doi:10.1128/AEM.02544-14
  • Reimche JL, Kirse DJ, Whigham AS, Swords WE. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size. Pathog Dis. 2017;75(1):ftw112.
  • Juneau RA, Pang B, Weimer KE, Armbruster CE, Swords WE. Nontypeable Haemophilus influenzae initiates formation of neutrophil extracellular traps. Infect Immun. 2011;79(1):431–438. doi:10.1128/IAI.00660-10
  • Juneau RA, Pang B, Armbruster CE, Murrah KA, Perez AC, Swords WE. Peroxiredoxin-glutaredoxin and catalase promote resistance of nontypeable Haemophilus influenzae 86-028NP to oxidants and survival within neutrophil extracellular traps. Infect Immun. 2015;83(1):239–246. doi:10.1128/IAI.02390-14
  • Murphy TF, Kirkham C, Gallo MC, Yang Y, Wilding GE, Pettigrew MM. Immunoglobulin a protease variants facilitate intracellular survival in epithelial cells by nontypeable haemophilus influenzae that persist in the human respiratory tract in chronic obstructive pulmonary disease. J Infect Dis. 2017;216(10):1295–1302. doi:10.1093/infdis/jix471
  • Andresen E, Gunther G, Bullwinkel J, Lange C, Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One. 2011;6(7):e21898. doi:10.1371/journal.pone.0021898
  • Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25(1):193–213. doi:10.1128/CMR.00013-11
  • Jacobs DM, Ochs-Balcom HM, Zhao J, Murphy TF, Sethi S. Lower airway bacterial colonization patterns and species-specific interactions in chronic obstructive pulmonary disease. J Clin Microbiol. 2018;56(10):10–128.
  • Weimer KE, Juneau RA, Murrah KA, et al. Divergent mechanisms for passive pneumococcal resistance to beta-lactam antibiotics in the presence of Haemophilus influenzae. J Infect Dis. 2011;203(4):549–555. doi:10.1093/infdis/jiq087
  • Hong W, Khampang P, Erbe C, Kumar S, Taylor SR, Kerschner JE. Nontypeable Haemophilus influenzae inhibits autolysis and fratricide of Streptococcus pneumoniae in vitro. Microbes Infect. 2014;16(3):203–213. doi:10.1016/j.micinf.2013.11.006
  • Cope EK, Goldstein-Daruech N, Kofonow JM, et al. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease. PLoS One. 2011;6(12):e28523. doi:10.1371/journal.pone.0028523
  • Bair KL, Campagnari AA. Moraxella catarrhalis promotes stable polymicrobial biofilms with the major otopathogens. Front Microbiol. 2020;10:3006. doi:10.3389/fmicb.2019.03006
  • Martinez-Resendez MF, Gonzalez-Chavez JM, Garza-Gonzalez E, et al. Non-typeable Haemophilus influenzae biofilm production and severity in lower respiratory tract infections in a tertiary hospital in Mexico. J Med Microbiol. 2016;65(12):1385–1391. doi:10.1099/jmm.0.000369
  • Naito S, Takeuchi N, Ohkusu M, et al. Clinical and bacteriologic analysis of Nontypeable Haemophilus influenzae strains isolated from children with invasive diseases in Japan from 2008 to 2015. J Clin Microbiol. 2018;56(7). doi:10.1128/JCM.00141-18
  • Vermee Q, Cohen R, Hays C, et al. Biofilm production by Haemophilus influenzae and Streptococcus pneumoniae isolated from the nasopharynx of children with acute otitis media. BMC Infect Dis. 2019;19(1):44. doi:10.1186/s12879-018-3657-9
  • Tagliaferri TL, Jansen M, Horz H-P. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol. 2019;9:22. doi:10.3389/fcimb.2019.00022
  • Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One. 2017;12(1):e0168615. doi:10.1371/journal.pone.0168615
  • Wajima T, Anzai Y, Yamada T, Ikoshi H, Noguchi N, Omri A. Oldenlandia diffusa extract inhibits biofilm formation by Haemophilus influenzae clinical isolates. PLoS One. 2016;11(11):e0167335. doi:10.1371/journal.pone.0167335
  • Balazs VL, Horvath B, Kerekes E, et al. Anti-haemophilus activity of selected essential oils detected by TLC-direct bioautography and biofilm inhibition. Molecules. 2019;24(18):3301.
  • Balazs VL, Filep R, Repas F, et al. Immortelle (Helichrysum italicum (Roth) G. Don) essential oil showed antibacterial and biofilm inhibitory activity against respiratory tract pathogens. Molecules. 2022;27(17):5518.
  • Piasecki B, Balazs VL, Kieltyka-Dadasiewicz A, et al. Microbiological studies on the influence of essential oils from several origanum species on respiratory pathogens. Molecules. 2023;28(7):3044.
  • Kunthalert D, Baothong S, Khetkam P, Chokchaisiri S, Suksamrarn A. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae. Microbiol Immunol. 2014;58(10):581–589. doi:10.1111/1348-0421.12194
  • Arenas J, Szabo Z, van der Wal J, et al. Serum proteases prevent bacterial biofilm formation: role of kallikrein and plasmin. Virulence. 2021;12(1):2902–2917. doi:10.1080/21505594.2021.2003115
  • Luke-Marshall NR, Hansen LA, Shafirstein G, Campagnari AA. Antimicrobial photodynamic therapy with chlorin e6 is bactericidal against biofilms of the primary human otopathogens. mSphere. 2020;5(4):10–128.
  • Bair KL, Shafirstein G, Campagnari AA. In vitro photodynamic therapy of polymicrobial biofilms commonly associated with otitis media. Front Microbiol. 2020;11:558482. doi:10.3389/fmicb.2020.558482
  • Umar NK, Kono M, Sakatani H, et al. Respiratory quinolones can eradicate amoxicillin-induced mature biofilms and nontypeable Haemophilus influenzae in biofilms. J Infect Chemother. 2022;28(12):1595–1604. doi:10.1016/j.jiac.2022.07.019
  • Uemura Y, Qin L, Gotoh K, Ohta K, Nakamura K, Watanabe H. Comparison study of single and concurrent administrations of carbapenem, new quinolone, and macrolide against in vitro nontypeable Haemophilus influenzae mature biofilms. J Infect Chemother. 2013;19(5):902–908. doi:10.1007/s10156-013-0598-5
  • Farrell DJ, Morrissey I, Bakker S, Buckridge S, Felmingham D. Global distribution of TEM-1 and ROB-1 beta-lactamases in Haemophilus influenzae. J Antimicrob Chemother. 2005;56(4):773–776. doi:10.1093/jac/dki281
  • Dabernat H, Delmas C, Seguy M, et al. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob Agents Chemother. 2002;46(7):2208–2218. doi:10.1128/AAC.46.7.2208-2218.2002
  • Garcia-Cobos S, Campos J, Lazaro E, et al. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother. 2007;51(7):2564–2573. doi:10.1128/AAC.00354-07
  • Qin L, Zhou Z, Hu B, Yamamoto T, Watanabe H. Antimicrobial susceptibility and genetic characteristics of Haemophilus influenzae isolated from community-acquired respiratory tract infection patients in Shanghai City, China. J Infect Chemother. 2012;18(4):508–514. doi:10.1007/s10156-012-0372-0
  • Chen D, Wen S, Feng D, et al. Microbial virulence, molecular epidemiology and pathogenic factors of fluoroquinolone-resistant Haemophilus influenzae infections in Guangzhou, China. Ann Clin Microbiol Antimicrob. 2018;17(1):41. doi:10.1186/s12941-018-0290-9
  • Taha A, Adeline F, Taha MK, Deghmane AE. Haemophilus influenzae drug resistance in France from 2017 to 2021: consideration for treatment of otitis media. J Glob Antimicrob Resist. 2022;31:222–227. doi:10.1016/j.jgar.2022.09.008
  • Ho PL, Chow KH, Mak GC, et al. Decreased levofloxacin susceptibility in Haemophilus influenzae in children, Hong Kong. Emerg Infect Dis. 2004;10(11):1960–1962. doi:10.3201/eid1011.040055
  • Tsang RSW, Shuel M, Whyte K, et al. Antibiotic susceptibility and molecular analysis of invasive Haemophilus influenzae in Canada, 2007 to 2014. J Antimicrob Chemother. 2017;72(5):1314–1319. doi:10.1093/jac/dkw565
  • Puig C, Tirado-Velez JM, Calatayud L, et al. Molecular characterization of fluoroquinolone resistance in nontypeable Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother. 2015;59(1):461–466. doi:10.1128/AAC.04005-14
  • Chang CM, Shih HI, Wu CJ, et al. Fluoroquinolone resistance in Haemophilus influenzae from nursing home residents in Taiwan: correlation of MICs and mutations in QRDRs. J Appl Microbiol. 2020;128(6):1624–1633. doi:10.1111/jam.14580
  • Prymula R, Peeters P, Chrobok V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 2006;367(9512):740–748. doi:10.1016/S0140-6736(06)68304-9
  • Saez-Llorens X, Rowley S, Wong D, et al. Efficacy of 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine against acute otitis media and nasopharyngeal carriage in Panamanian children - A randomized controlled trial. Hum Vaccin Immunother. 2017;13(6):1–16. doi:10.1080/21645515.2017.1287640
  • Novotny LA, Bakaletz LO. Transcutaneous immunization with a nontypeable Haemophilus influenzae dual adhesin-directed immunogen induces durable and boostable immunity. Vaccine. 2020;38(10):2378–2386. doi:10.1016/j.vaccine.2020.01.052
  • Michel LV, Kaur R, Gleghorn ML, et al. Haemophilus influenzae protein D antibody suppression in a multi-component vaccine formulation. FEBS Open Bio. 2022;12(12):2191–2202. doi:10.1002/2211-5463.13498
  • Ysebaert C, Denoel P, Weynants V, et al. A protein E-PilA fusion protein shows vaccine potential against nontypeable Haemophilus influenzae in mice and chinchillas. Infect Immun. 2019;87(8):10–128.
  • Nakahashi-Ouchida R, Mori H, Yuki Y, et al. Induction of mucosal IgA-mediated protective immunity against nontypeable Haemophilus influenzae infection by a cationic nanogel-based P6 nasal vaccine. Front Immunol. 2022;13:819859. doi:10.3389/fimmu.2022.819859
  • Martyn L, Sethia R, Chon R, et al. Antibodies against the DNABII protein integration host factor (IHF) inhibit sinus implant biofilms. Laryngoscope. 2020;130(6):1364–1371. doi:10.1002/lary.28188
  • Clark SL, Seppanen EJ, Kirkham LS, et al. Australian aboriginal otitis-prone children produce high-quality serum IgG to putative nontypeable haemophilus influenzae vaccine antigens at lower titres compared to non-aboriginal children. Front Cell Infect Microbiol. 2022;12:767083. doi:10.3389/fcimb.2022.767083