182
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections

, ORCID Icon, , , , & show all
Pages 5091-5105 | Received 11 Jun 2023, Accepted 02 Aug 2023, Published online: 08 Aug 2023

References

  • Li ZJ, Zhang HY, Ren LL, et al. Etiological and epidemiological features of acute respiratory infections in China. Nat Commun. 2021;12(1):5026. doi:10.1038/s41467-021-25120-6
  • Zhang N, Wang L, Deng X, et al. Recent advances in the detection of respiratory virus infection in humans. J Med Virol. 2020;92(4):408–417. doi:10.1002/jmv.25674
  • Lu M. Etiology of bacterial pneumonia in children. Chin J Pract Pediatr. 2018;33(09):702–706. doi:10.19538/j.ek2018090611
  • Jain N, Lodha R, Kabra SK. Upper respiratory tract infections. Indian J Pediatr. 2001;68(12):1135–1138. doi:10.1007/BF02722930
  • Bakaletz LO. Viral-bacterial co-infections in the respiratory tract. Curr Opin Microbiol. 2017;35:30–35. doi:10.1016/j.mib.2016.11.003
  • GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2023;400(10369):2221–2248. doi:10.1016/S0140-6736(22)02185-7
  • Wu P, Presanis AM, Bond HS, Lau EHY, Fang VJ, Cowling BJ. A joint analysis of influenza-associated hospitalizations and mortality in Hong Kong, 1998-2013. Sci Rep. 2017;7(1):929. doi:10.1038/s41598-017-01021-x
  • McDanel JS, Perencevich EN, Storm J, et al. Increased Mortality Rates Associated with Staphylococcus aureus and Influenza Co-infection, Maryland and Iowa, USA(1). Emerg Infect Dis. 2016;22(7):1253–1256. doi:10.3201/eid2207.151319
  • McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol. 2014;12(4):252–262. doi:10.1038/nrmicro3231
  • Madhi SA, Schoub B, Klugman KP. Interaction between influenza virus and Streptococcus pneumoniae in severe pneumonia. Expert Rev Respir Med. 2008;2(5):663–672. doi:10.1586/17476348.2.5.663
  • Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008;198(7):962–970. doi:10.1086/591708
  • Jamieson AM, Pasman L, Yu S, et al. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science. 2013;340(6137):1230–1234. doi:10.1126/science.1233632
  • Klein EY, Monteforte B, Gupta A, et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses. 2016;10(5):394–403. doi:10.1111/irv.12398
  • Borgogna TR, Hisey B, Heitmann E, Obar JJ, Meissner N, Voyich JM. Secondary Bacterial Pneumonia by Staphylococcus aureus Following Influenza A Infection Is SaeR/S Dependent. J Infect Dis. 2018;218(5):809–813. doi:10.1093/infdis/jiy210
  • Abbara S, Guillemot D, El Oualydy S, et al. Antimicrobial Resistance and Mortality in Hospitalized Patients with Bacteremia in the Greater Paris Area from 2016 to 2019. Clin Epidemiol. 2022;14:1547–1560. doi:10.2147/CLEP.S385555
  • Ahmed N, Khan M, Saleem W, et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients. Antibiotics. 2022;11(2):276. doi:10.3390/antibiotics11020276
  • Zhou Y, Wang Y, Cheng J, Zhao X, Liang Y, Wu J. Molecular epidemiology and antimicrobial resistance of Haemophilus influenzae in Guiyang, Guizhou, China. Front Public Health. 2022;10:947051. doi:10.3389/fpubh.2022.947051
  • Hascelik G, Soyletir G, Gulay Z, et al. Serotype distribution of Streptococcus pneumoniae and pneumococcal vaccine coverage in adults in Turkey between 2015 and 2018. Ann Med. 2023;55(1):266–275. doi:10.1080/07853890.2022.2160877
  • Cowan MM. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. 1999;12(4):564–582. doi:10.1128/CMR.12.4.564
  • Lee JH, Kim YG, Khadke SK, Yamano A, Woo JT, Lee J. Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Phytomedicine. 2019;63:153033. doi:10.1016/j.phymed.2019.153033
  • Editorial Board of Chinese Materia Medica. Chinese Materia Medica. Shanghai Science and Technology Press; 1999.
  • Flora of China Editorial Committee. Flora of China. Science Press. 80. 1988.
  • Chen P, Chen X, Wu C, Meng Y, Cao J. Research progress on the development and utilization of Thesium chinense Turcz. Chin Wild Plant Resour. 2020;39(06):48–52.
  • Li D, Li J, Yuan Y, et al. Risk factors and prognosis of acute lactation mastitis developing into a breast abscess: a retrospective longitudinal study in China. PLoS One. 2022;17(9):e0273967. doi:10.1371/journal.pone.0273967
  • Leung AK, Davies HD. Cervical lymphadenitis: etiology, diagnosis, and management. Curr Infect Dis Rep. 2009;11(3):183–189. doi:10.1007/s11908-009-0028-0
  • Liu C, Li XT, Cheng RR, et al. Anti-oral common pathogenic bacterial active acetylenic acids from Thesium chinense Turcz. J Nat Med. 2018;72(2):433–438. doi:10.1007/s11418-018-1180-3
  • Yuan Y, Long Z, Xu X, Wang L, Ying M. Comparison of wild and cultured thesium chinense turcz on bacteriostasis and anti-inflammation. Chin J Pharm Biotec. 2006;3:219–222. doi:10.19526/j.cnki.1005-8915.2006.03.015
  • Liu Y, Pan L, Qi K, Jiang L. Sensitivity test of effective extracts from Thesium chinense to seven kinds of bacteria. Guizhou Med. 2006;6:564–566. doi:10.3969/j.issn.1000-744X.2006.06.043
  • The European Committee on Antimicrobial Susceptibility Testing. Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method. Available from: https://www.eucast.org/ast_of_bacteria/media_preparation. Accessed August 3, 2023.
  • Besra M, Kumar V. In vitro investigation of antimicrobial activities of ethnomedicinal plants against dental caries pathogens. 3 Biotech. 2018;8(5):257. doi:10.1007/s13205-018-1283-2
  • The European Committee on Antimicrobial Susceptibility Testing. EUCAST reading guide for broth microdilution. Available from: https://www.eucast.org/ast_of_bacteria/media_preparation. Accessed August 3, 2023.
  • Rodriguez-Melcon C, Alonso-Calleja C, Garcia-Fernandez C, Carballo J, Capita R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology. 2021;11(1):46. doi:10.3390/biology11010046
  • Mutonga DM, Mureithi MW, Ngugi NN, Otieno FCF. Bacterial isolation and antibiotic susceptibility from diabetic foot ulcers in Kenya using microbiological tests and comparison with RT-PCR in detection of S. aureus and MRSA. BMC Res Notes. 2019;12(1):244. doi:10.1186/s13104-019-4278-0
  • Parveen Z, Deng Y, Saeed MK, Dai R, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi. 2007;127(8):1275–1279. doi:10.1248/yakushi.127.1275
  • Welp AL, Bomberger JM. Bacterial Community Interactions During Chronic Respiratory Disease. Front Cell Infect Microbiol. 2020;10:213. doi:10.3389/fcimb.2020.00213
  • Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64:175–188. doi:10.1146/annurev-med-042711-140023
  • Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 2014;22(6):326–333. doi:10.1016/j.tim.2014.02.001
  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493–512. doi:10.4155/fmc.15.6
  • Vaughn AR, Haas KN, Burney W, et al. Potential Role of Curcumin Against Biofilm-Producing Organisms on the Skin: a Review. Phytother Res. 2017;31(12):1807–1816. doi:10.1002/ptr.5912
  • Mouwakeh A, Kincses A, Nove M, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res. 2019;33(4):1010–1018. doi:10.1002/ptr.6294
  • Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: advances, challenges, and opportunities. Med Res Rev. 2021;41(4):1855–1889. doi:10.1002/med.21780
  • Wang L, Qu F, Zhu Z, et al. The important role of tricarboxylic acid cycle metabolism pathways and core bacterial communities in carbon sequestration during chicken manure composting. Waste Manag. 2022;150:20–29. doi:10.1016/j.wasman.2022.06.034
  • Michel A, Agerer F, Hauck CR, et al. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol. 2006;188(16):5783–5796. doi:10.1128/JB.00074-06
  • Pu Y, Li Y, Jin X, et al. ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic Tolerance. Mol Cell. 2019;73(1):143–156 e4. doi:10.1016/j.molcel.2018.10.022